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Abstract: Keyword Spotting (KWS) in continuous speech is an emerging but challenging task that needs to 

deal with speech dynamics. Literature contains a variety of approaches for keyword spotting and spoken 

term detection. Most of these techniques are based on pattern based methods that are limited to a specific 

vocabulary of words with high computational cost for system training. A valuable contribution to the 

existing speaker dependent keyword spotting approaches is made in this paper by introducing a template 

matching based approach that exploits the Dempster’s theory of Combined Evidence (CEv). The CEv plays a 

significant role as a Decision Support System (DSS) by integrating the keyword match/mismatch beliefs 

from multiple resources and providing a combined score (belief). Finally, performance of the proposed 

approach is compared with the existing keyword spotting techniques by using statistical analysis of the 

experimental results.  
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1. Introduction 

In the template based speech modeling, recognition is performed by matching the test word (utterance) 

with the all stored templates of words and calculating the matching score based on acoustic features [1]. 

The Dynamic Time Warping (DTW) and Vector Quantization (VQ) based speech recognition are the best 

examples of such systems. A KWS system is based on the partial information extraction (keyword) from a 

continuous speech signal. Despite of the fact that research has been conducted in the area of KWS since 

forty years, yet the formulation of the KWS has not been well established [2]. The related research work can 

be summarized into three main categories that include Query-by-Example (QbyE) methods, keyword/filler 

methods, and Large Vocabulary Continuous Speech Recognition (LVCSR) methods. Among the 

aforementioned approaches, QbyE is the most relevant to the approach proposed in this research study. 

Literature consists of a number of KWS approaches in relation to QbyE that use some sort of variations in 

DTW [3]-[6].  

Over the past decade, most of the related research is focused on novelty of the template representation 

methods [7]-[10]. An unsupervised spoken term detection using acoustic segment model is presented by 

[10]. The aim of the study was to measure the QbyE performance using acoustic segmentation model based 

posteriorgrams and traditional Gaussian mixture model posteriorgrams. The acoustic segment models are 

the unsupervised Hidden Markov Models (HMM) of non-transcribed speech data. A segmented DTW is 

applied for the query and test utterance matching and the location of the query utterance are identified. 
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The Fisher and the TIMIT dataset are used for the experimentation purpose. System performance is 

measured using the standard binary classification method. Despite of the fact that this approach does not 

uses the speech transcript for the supervised training, it uses the HMMs for posteriorgrams representation 

that may take huge amount of computational cost. 

Spoken term detection in speech for QbyE approach is introduced in [8] for a limited or no in-domain 

training data. The keyword and template speeches are represented by phonetic posteriorgrams obtained 

from a phonetic recognition system. The measured posteriorgrams are forwarded to a constrained DTW 

that measures the warping distance and the position with minimum warping distance is identified as 

desired keyword. Advantage of this approach is the language independence because the transcript data is 

not used. However, the accuracy in terms of keyword detection may be a question that is improved in the 

proposed research work. Similarly, a keyword spotter presented in [11] is based on MFCC and energy of the 

speech signal as feature set. The system is analyzed using Hamming window with 36 milliseconds frame 

length. The VQ algorithm is used for the vector training and codebook generation. Each codebook 

represents the acoustic features of the signal. The HMMs were used for the probability assignment for 

observation given a word. This system is based on VQ and HMM that need a high computational time for 

training learning the models. Moreover, HMM based recognizers depend upon probability assignment that 

may not be assigned correctly and may cause misrecognition. 

Existing pattern matching based KWS approaches uses different versions of DTW to resolve the time 

warping issue. However, there are some challenges associated with the DTW approach that are needed to 

be considered. Firstly, the distance matrix of DTW grows exponentially with increasing length of the speech 

utterance. This issue can be resolved by applying some boundary constraints and pruning the search space 

[12]; however the pruning process may lose important information leading to a considerable sacrifice of 

the performance. Secondly, DTW uses the information of a single distance metric to make the 

match/mismatch decision about of a query utterance. As the DTW model doesn’t use the transcribed data 

for training, single information resource may not be reliable. In this paper, a robust method for KWS is 

proposed that is based on acoustic features and resolves the aforementioned challenges associated with 

DTW. Very first time, CEv is deployed as DSS that fuses the beliefs from multiple distance metrics and 

provides a combined matching score that is more reliable. 

Section 2 of this paper presents the sequential flowchart followed by the formulation of Dempster’s 

theory of evidence. Performance evaluation and simulation settings are presented in Section 3. A detailed 

discussion on KWS results is presented using binary classifications metrics. 

2. Proposed Method 

A KWS can be considered as a sub-part of the automated speech recognition which aims to extract the 

partial information from speech signal in the form of a query utterance (keyword). Time warping effects 

due to dynamic length of spoken words and existence of the silence segments are the most significant 

challenges to be resolved. A number of methodologies are amalgamated sequentially to resolve the speech 

dynamics and time warping issues in the proposed KWS approach. Fig. 1 show the sequential flow of the all 

processes and detail of each component is addressed in the following section.  

2.1. Pre-processing and Feature Extraction 

Most of the time, speech signal consists of silence parts and background noise that may be a major cause 

of mismatching or misidentification. Pre-treatment is a process to enhance the input speech signals in 

terms of sample rate, silence removal, and background noise reduction. There are a number of techniques 

in the literature that uses time and frequency domain features (i.e. energy, zero cross rate, spectral centroid) 

to remove the silence part of speech signal [13], [14]. In the proposed KWS approach, an efficient silence 
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removal method is used that was introduced in our previous work [15]. This approach deploys a pitch 

tracking method proposed in [16] to estimate the fundamental frequency using multiple information 

resources. The enhanced speech signals are then forwarded for the feature extraction process to be 

expressed as a sequence of feature vectors that may provide sufficient information to represent the speech 

utterance. The MFCCs are the most dominant and distinguishing features of human speech that have been 

successfully used in the literature [15], [17]. Rather than extracting the traditional MFCC features from the 

speech signal, wavelet based features are also extracted. The combined feature set of MFCC’s mean values 

and Wavelet Energy (WE) measurements empowers the KWS performance that is discussed later in the 

performance section. 
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Fig. 1. Processing flow of the proposed method. 

 
A major advantage of wavelet transform is the simultaneous representation of time and frequency 

analysis which helps to filter out the noisy segments from the spectrum as well as from the time domain 

speech signal. Wavelet decomposition analyses the function at various levels of resolution and provides a 

simultaneous time-frequency representation of input speech signal. This representation empowers the 

wavelet’s superiority because of its efficiency for localizing the frequency in time domain along with the 

correlation matrix as a third dimension. Approximation and detailed coefficients possessing the magnitude 

values below the threshold are filtered out while remaining coefficients are integrated together and 

forwarded for further processing. Energy in a frequency level is measured by integrating the intensity 

magnitudes over time. After calculating the normalized energy for each frequency band, a threshold value 

(0.7) is applied to each frequency band to filter out the unnecessary scales. The extracted MFFC and WE 

features for both; keyword and template frame are first normalized and then forwarded to a similarity 

measure. Euclidean distance is used as a similarity measure. As Euclidean distance provides dissimilarity 

score, fewer score means more similar. Because of the normalized data distribution, the similarity 

measurement values are within the ranges of 0 and 1 for each pair of keyword and template speech frame. 

These measurements are used as the match/mismatch beliefs that are forwarded to DSS along with the pre-

set weights. 

2.2. Formulation of the Beliefs Combination 

The Dempster-Shafer Theory (DST) is considered as a generalization to the Bayesian theory in such a 

way that it can handle the degree of ignorance. In case of certain information, there are a number of fusion 
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methods that can provide a combined belief. However, most of these approaches are unable to handle the 

degree of ignorance. The DST provides the best estimate of the degree of belief by combination of 

evidences/ believes from multiple resources. A detailed study on DST advantages, disadvantages, criticism, 

and its application areas is presented in [18]. 

2.2.1. Define the basic attributes  

Let’s E={mel, e} represents the set of basic attributes for the proposed KWS where ‘mel’ and ‘e’ are the 

belief resources. In our case, MFCC and WE are such resources. The relative weights for the basic 

attributes are pre-set by offline experiments such that 0 ≤ ωi ≤ 1 and it fulfils (1). 
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where; ‘L=2’ represent the number of attributes that are (mel, e) for KWS. The distinctive evaluation 

grades are defined as set of two entities, i.e. H= {match, mis_match}. For each attribute in ‘E’ and 

evaluation grade ‘H’, a degree of belief βn is assigned. The degree of belief denotes the source’s level of 

confidence when assessing the level of fulfillment of a certain property. 

2.2.2. Basic probability assignments for each basic attribute 

Let mn,i be a basic probability mass representing the degree to which the ith basic attribute. A hypothesis 

that the general attribute is assessed to the nth evaluation grade Hn can be presented as: 

 

, ,n i i n im                                                                                      (2) 

 

where ‘n’ are number of evaluation grades (match, mis_match). The remaining probability mass mH,i 

unassigned to each basic attribute is calculated as: 
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where, ‘N=2’ are the total number of evaluation grades. The remaining probability mass is further 

decomposed into ,H im  and ,H im  as: 

, 1H i im                                                                                       (4) 
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With  

, , ,H i H i H im m m                                                                                 (6) 

 

Equation (4) measures the degree to which final attributes have not yet been assessed to individual 

grades due to the relative importance of basic attributes after their aggregation. Equation (5) measures 

the degree to which final attributes cannot be assessed to individual grades due to the incomplete 

assessments for basic attributes. 
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2.2.3. Combined probability assignments 

In this step, the probability mass of the basic attributes E={mel, e} are aggregated to form a single 

assessment for keyword match/mismatch. The combined probability masses can be generated using the 

following set of recursive evidence reasoning equations: 

 

, 1 1 , , 1 , , 1 , , 1

{ }:

[ . . . ]

1,...,

n

n i i n i n i H i n i n i H i

H

m K m m m m m m

n N

      



                                             (7) 

 

where i={1,…, L-1}, L=2 is the number of basic attributes, and ‘N=2’ are the total number of evaluation 

grades. In (7), mn,1.mn,2 measures the degree of both attributes {mel, e} supporting the general attribute of 

keyword match to be assessed to Hn. The term mn,1.mH,2 measures the degree of only 1st attribute {mel} 

supporting keyword match to be assessed to Hn. The term mH,1.mn,2 measures the degree of only 2nd 

attribute {e} supporting final belief to be assessed to Hn. 
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where, i={1,…, L-1}. In (9), ,1 ,2.H Hm m  measures the degree to which final attribute cannot be assessed to 

any individual grades {match, mis_match} due to the incomplete assessments for both attributes {mel, e}. 

Term ,1 ,2.H Hm m  measures the degree to which final attributes cannot be assessed due to the incomplete 

assessments for {mel} only. In (10), ,1 ,2.H Hm m measures the degree to which final attribute has not yet 

been assessed to individual grades due to the relative importance of {mel} and {e} after {mel} and {e} have 

been aggregated. The normalization factor ‘K’ is used to normalize ,n Hm m such that 
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2.2.4. Calculation of the combined degree of belief 

Let βn denote the combined degree of belief that the KWS assessed to the grade Hn, which is generated 

by combining the assessments for all the associated basic attributes E={mel, e}, then βn is calculated by: 
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Above equation for βH measures the belief that is left unassigned during the assessments. 

3. Performance Evaluation and Experimental Setup 

A number of metrics have been used in the literature to evaluate the performance of KWS approaches. 

However, the most relevant are the gold standards used for the binary classification [19]. This is because 

the output of KWS is in the binary form (match or mismatch). To conduct a case study in this research, a 

SENNHEISER e935 is used for speech recordings which is a vocal dynamic microphone consisting a built 

in noise filter. Speech is recorded at a sampling frequency of 8 KHZ. To conduct a case study, we have 

recorded a speech dataset by 30 speakers (17 male, 13 female) that consists of connected words in the 

form of digits (5 recordings for each digit by each speaker), short phrases of up to 10 seconds (5 sentences 

by each speaker) and long phrases of up to 20 seconds (5 paragraph bay each speaker). For the long 

speech phrase spotting experiments; a speech corpus from American Rhetoric’s (top 100 speeches) [20] is 

used. It is based on hours of speeches recorded by different people on different topics. Because of the 

template frames overlapping, a mismatch tolerance of single frame size is set throughout the experiment 

conduction. Individual performances of the proposed combined evidence (CEv) based KWS approach is 

compared with the existing constrained DTW and segmented-DTW based KWS approaches.  

 

 
Fig. 2. Setting the threshold value and weights for belief resources. 

 
An important factor for the proposed KWS performance is the threshold value that specifies the decision 

boundary for the keyword to be considered as a match or mismatch. The trade-off between sensitivity and 

specificity depends upon the threshold value change. Increase in the threshold value will increase the 

specificity and vice versa. However, the threshold value can be set with respect to the application area. For 

example, KWS used for the intelligent agencies may assign more importance to sensitivity to maximize the 

true positives by reducing the threshold. In such scenarios, the objective is to identify the desired keyword 

(e.g. blast, terror) that exists in a speech recording. To set a threshold value for match/mismatch decision 

boundary, the ROC curve is achieved by varying threshold from 0 to 1 with a lag of 0.01 as shown in Fig. 2. 

It is observed that the best value in ROC curve is achieved with a threshold value of 0.85 (85%). It means 

that the template frame will be rejected if its matching belief with the keyword is less than 85%. As there 

is a trade-off between sensitivity and specificity, threshold value is chosen while considering both metrics. 

As defined in (2, 3) that the basic probabilities in DST depend upon the weights assigned to the basic 

attributes E={mel, e}. Experiments are conducted by setting continuously varying weights for both 

attributes from 0 to 1 with a lag of 0.01. The ROC curve is achieved (Fig. 2) for 100 values of weights 

between 0 and 1. It is observed that the best performance in terms of FPR and TPR is achieved at wmfcc 

=0.75, wwav = 0.25. This implies that the best performance is achieved by assigning more weight to 

matching belief of MFCC based features. 
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Table 1. Performance Comparison of Proposed Method and DTW 

Performance Metrics CEv Wav MFCC DTW 

Sensitivity 0.97 0.92 0.95 0.83 

Specificity 0.93 0.86 0.92 0.90 

Accuracy 0.92 0.86 0.93 0.88 

1/LR+ 0.06 0.14 0.07 0.17 

LR- 0.03 0.07 0.05 0.43 

True +Ve Rate 0.97 0.93 0.96 0.29 

Type I Error 
µ 0.01 0.02 0.01 0.01 

σ 0.01 0.02 0.01 0.01 

Type II Error 
µ 0.01 0.01 0.03 0.26 

σ 0.02 0.03 0.10 0.27 

 

It can easily be observed that the sensitivity of CEv is greater than the individual values of MFCCs and 

wavelets by a factor of 2% and 5% respectively. This implies that the deployment of DST increases the 

KWS as well as it empowers the performance in terms of decision making. The likelihood ratios (LR+, LR-) 

are considered one of the best metrics to measure the diagnostic accuracy. In terms of KWS, LR presents 

the probability of a test with keyword match divided by the probability of the same test with keyword 

mismatch. Larger LR+ consist more information than smaller LR+ whereas smaller LR- consists more 

information than larger LR-. To simplify the LR values, a relative magnitude is considered by taking the 

reciprocal of LR+. It is analysed from Table 1 that LR- for the CEv approaches to zero (0.03) as compared 

to 0.4 for DTW. This indicates the superiority of the proposed KWS approach over the existing DTW based 

KWS approaches.  

Type I and Type II errors indicate the recognizer failure related to FP and FN respectively. These 

metrics have been represented in a number of ways in the related area that include mean square error and 

absolute errors as most common metrics. Table 1 demonstrates ‘µ’ (mean) and ‘σ’ standard deviation for 

both types of error for five different approaches while using the same dataset. As discussed before, in KWS 

related tasks, Type II error may have more importance as compared to Type I error because of the more 

emphasis on spotting a keyword. However, it may vary with respect to application area. It is observed in 

Table 1 that the ‘µ’ and ‘σ’ for Type II error are negligible (i.e. 0.006 and 0.019 respectively) in case of CEv 

based KWS as compared to DTW approach (0.25 and 0.27 respectively) which indicates the robustness of 

our approach. In addition to this, it can also be observed that the individual errors for MFCCs and wavelet 

based approaches are higher than the CEv approach that proves the significance of the proposed DSS for 

KWS task.  

 

 
Fig. 3. Keyword detection rate vs. computational cost. 

 
Despite of the KWS performance by the aforementioned approaches, it is also important to analyze the 

computation time. Fig. 3 provides an indication of execution time for all aforementioned approaches. It is 
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very clear that the best execution time is achieved by MFFC based approach that is introduced in the 

current research study. This is because of Euclidean distance deployment for mean values of MFCCs 

features in the current research rather than DTW which increases the search space as it has been used in 

the literature. Although, the minimum execution time (i.e. 0.06 sec) is achieved by MFCC features based 

approach, yet CEv approach with higher execution time (i.e. 1.3 sec) would be preferred because of its 

superiority in terms of keywords detection rate which is the primary objective. The computation time 

dramatically decreases by using the constrained DTW; however, it sacrifices a significant amount of 

keyword detection rate (i.e. 50%) that fails the achievement of the primary objective. 
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