


Abstract—This paper presents a feature modeling endeavour

for a television set product family by a major consumer

electronics company. This work consists of three stages. First, a

feature model is constructed, based on the analysis of the

product family requirements. The constructed model is

supplemented with a feature glossary. FeatureIDE is used as

the model editor. Feature attributes, not supported by

FeatureIDE, are represented in the basic feature model by

using additional features. Second, the feature model in XML is

converted into the schema of the analysis tool, using a custom

parser developed for this purpose. Third, the model is analyzed

by well-known analysis operations. FAMA is used as the

analysis tool. Performance results are obtained. Finally, lessons

learned from the whole effort are discussed.

Index Terms—Feature modeling, extended feature model,

software product lines, commonality, variability, variability

management.

I. INTRODUCTION

In consumer electronics industry the focus is shifting

from single products to product families, thus, from project

organization to product line organization. Thanks to the

Software Product Line Engineering (SPLE), it gets easier to

configure products for various customer needs, thus, the

time for producing new products reduces. In the context of

software product line engineering, feature models are used

for modeling variability and commonality in product

families. Feature modeling was proposed as a part of the

Feature Oriented Domain Analysis (FODA) [1]. FODA

defines important and distinctive system characteristics,

which influence user experience, as features. Variability and

commonality in a product family can be expressed and

managed using feature models. In [2] it is stated that

inspecting commonality and variability in a systematic way

during the domain analysis supports product family

identification.

A digital TV [3]-[5] can be described as the point where

the computer and the television meet. Similar to computers,

TVs that possess digital TV characteristics have an

operating system, internet access, online services, software

applications, etc. In digital TVs, plenty of operations can be

realized by adding new features to them. These features are

in a wide variety such as picture transfer via USB/DLNA

from mobile phone, tablet or PC, saving a broadcast by

television as a video without needing any external device,

Manuscript received December 10, 2013; revised April 8, 2014.

The authors are with the Department of Computer Engineering, Middle

East Technical University, Ankara, 06531, Turkey (e-mail:
gulseren.fedakar@gmail.com, oguztuzn@ceng.metu.edu.tr,

karatas@ceng.metu.edu.tr).

video-conference systems, connecting to the internet via TV,

using social media applications, etc. Digital TV product line

serves as a challenging example for variability and

commonality management in the framework of SPLs as

there is an increasing demand in the sector due to changing

customer needs and expanding set of features that the

products can have.

In this study, variability and commonality in an industrial

embedded software product family is modeled using feature

models. “Smart TV” product line of a major consumer

electronics company in Turkey, which is a digital TV and

will be referred here as the NewGenTV product line, is used

as the case study. First, we constructed the feature model for

the NewGenTV product line. During this process we used

FeatureIDE [6] as the modeling editor. As FeatureIDE does

not support feature attributes but some of our features have

them, we adopted a method, which will be discussed in

Section III, to define feature attributes as features. Next, we

performed a translation which takes feature model in XML

format as input and converts it to the AFM format of FAMA

[7], [8]. Finally we used FAMA to perform automated

analyses on the model.

II. BACKGROUND

FeatureIDE is an open-source framework for feature

oriented software development (FOSD) [6]. It is built on

Eclipse and can work smoothly with large models. It has a

GUI view that enables model editing via a graphical

interface. It can generate an XML-based representation of

the edited model. However, its present version does not

support feature attributes.

FAMA is an automated analyses framework for feature

models. FAMA integrates a number of commonly used

reasoners such as Choco, Sat4j, JavaBDD, and JaCoP,

where it selects the most efficient solver automatically in

run time for the best performance considering the operation

in use. It can operate on both the basic and the extended

feature models. In FAMA, domains of the attributes consist

of integers. Moreover, attributes can be used in constraints.

III. FEATURE MODELING

We started our study with the domain analysis phase. In

this phase, we adopted the strategy reported in [9] and

initially completed the domain characterization and project

planning tasks. Then, we performed domain analysis steps

such as data collection, data analysis, classification, and

evaluation of the model iteratively. Thus, we revised our

model repeatedly. During these iterations, we identified the

features and their attributes, feature grouping characteristics,

Feature Modeling and Automated Analysis for a Digital

Television Product Family

Gülseren Fedakar Gönül, Halit Oğuztüzün, and Ahmet Serkan Karataş

358

International Journal of Computer and Electrical Engineering, Vol. 6, No. 4, August 2014

DOI: 10.7763/IJCEE.2014.V6.853

mailto:gulseren.fedakar@gmail.com
mailto:oguztuzn@ceng.metu.edu.tr

common and variable features, relationships and

dependencies between the features, and the constraints in the

family. To overcome the problems we encountered, we

performed an extensive literature survey on the related fields,

conducted interviews with the domain experts from the

company, and received continuous feedback from the

experts, who constantly reviewed the evolving feature

model. For the data collection step, we started by collecting

information from the domain experts, product

documentation, and publications on digital TVs [3]-[5]. This

data were mainly a bunch of vague information for the

people other than domain experts before we chose

appropriate ones and extracted them as features. Next, for

the analysis step, we analyzed the collected information in

order to detect the reusable features and identify some of the

similarities and differences among them. We also started to

build a Feature Glossary, which has been repeatedly revised

along with the model as the domain analysis continued, that

explains terms, concepts, and standards about the domain

that appear in the feature model such as DVB-S, HDMI, TV

Tuner, PIP, PAP, etc. Then, in the classification step, we

abstracted the features according to their descriptions and

relevance to common concepts, and created groups that

consist of similar features. Finally, after eliminating the

errors, contradictions, and gaps, we obtained a primary

model that presents 23 conceptual groups when all

characteristics are considered. These conceptual groups

were presented as children of root feature as seen in the Fig.

1. Moreover, the model also included the primary

dependencies in the form of constraints.

Fig. 1. Conceptual groups of feature model.

In the following subsections we discuss some of the key

tasks in the domain analysis phase, and finally present the

important characteristics of the resulting model.

A. Feature Identification

Identification of features involves abstracting domain

knowledge obtained from domain analysis. In general,

features can be classified into four categories: capability

features, operating environment features, domain technology

features and implementation features [10].

Capability features typically have user visible properties

[10]. We identified 345 capability features in NewGenTV.

This category includes features such as

ChannelBandwithForAnalog, which is a non-functional

characteristic of the system, ManualSearch, which is a

distinct service provided for user and listed in the user

manual, and AFT, which is an internal function to provide a

service.

Operating environment features are the features which are

related to the environment (hardware and software) in which

the system is used and are related to communication of this

system with external systems [10]. We identified 14

operating environment features in NewGenTV. For example,

in our model CPUPower and RAMPower are the operating

environment features. Also LineoutOutput feature is

operating environment features as it is related to the port

that speakers connected to.

Domain technology features are the features which are

specifically related to the domain and may not be

meaningful in other domains [10]. They indicate the

techniques of implementing operations or services. We

identified 221 domain technology features in NewGenTV.

This category includes features such as DVB_T, which is a

Digital Video Broadcasting standard for television, and

NTSC, which is an analogue television color encoding

system standard.

Implementation features are generic functions or

technologies which can also be used in other domains [10].

They are used to implement other features. We identified

17 implementation features in NewGenTV. This category

includes features such as

LNBpowerAndPolarization_DVBS2, which is used to

implement a satellite TV, and DiseqC12Support, which is a

communication protocol for use between a satellite receiver

and a device such as a multi-dish switch or a small dish

antenna rotor.

B. Feature Model Organization

After the feature identification step a hierarchical model

is created by classifying and structuring the features using

their relationships. First, we have identified 23 conceptual

groups, groups of features that are related to each other, in

359

International Journal of Computer and Electrical Engineering, Vol. 6, No. 4, August 2014

the model. Then, we added each feature as a child to the

feature that represents the conceptual group it belongs to.

The elements of this feature model have basic

decompositional relationships. These are mandatory-

relationships, optional-relationships, or-relationships,

alternative-relationships as seen in the Fig. 2. Also cross-

tree constraints, which allow for the specification of further

dependencies among hierarchically unrelated features, are

added to the model. For example, as seen in the Fig. 3, the

constraint DigitalProgramStorageT_C implies (DVB_T or

DVB_C or DVB_T2). As DigitalProgramStorageT_C is

only applicable to terrestrial or cable broadcasts, it implies

that DVB_T or DVB_C or DVB_T2 is selected.

Fig. 2. Feature model relationships.

Fig. 3. Constraints.

C. Defining Feature Attributes

FeatureIDE version 2.6.2 [6], which is the version we

used in this study, has no representation for features with

attributes. However, in our model there exist some features

with attributes. Therefore, we adopted a method to represent

feature attributes in FeatureIDE. Using this method, we

constructed a basic feature model to mimic the extended

model we have.

For each feature that has attribute(s), a new feature that

denotes a variation point is added as a child, connected

using the mandatory relation to its father, the feature with

attribute(s). We use the prefix “vp” in the names of such

features to indicate that they represent a variation point. In

general, the naming convention we use for the variation

point features is as follows: “vp”+ parent feature name +

“_in”+ unit type. Next, we added a new feature for each

possible value that an attribute can take, and connected these

new features (i.e. variants) to the variation point feature.

When there is only one possible value we used the

mandatory relation for the connection. On the other hand,

when there are two or more values, we used or relation since

a product can support any non-empty subset of these values.

The naming convention we used for the features

representing possible attribute values are as follows: parent

feature name + “__” + value. For example, as presented in

Fig. 4, the feature ArealInputImpedance has an attribute that

can take the value 75 Ohm and the feature

ChannelBandwidthForAnalog has an attribute that can take

two possible values, namely 7 MHz and 8 MHz.

When the possible value an attribute can take is a range,

we applied a slight modification to our naming convention,

and inserted the string “to” between the end minimum and

maximum values of the range. For instance, if the value an

attribute can take is the range 47-77, then we used “47to77”

as the possible value as seen in the Fig. 5.

Fig. 5. Attributed model for ranged values.

At the end of modeling process, the feature model we

obtained contained a single root feature named

NewGenTVSPL (level-0) and 23 main feature groups (level-

1). After adding all the features to the model, we obtained a

model that has 621 features in total, including the root

feature. The feature diagram that represents this model has

427 internal nodes (i.e. 427 features are further decomposed

into other features) and 194 leaves. The longest path from

the root feature to a leaf feature consists of 4 decomposition

relations. The average number of children for parent features

is 2.2. However, there are some extreme cases. For example,

the feature ICProperties has 42 child features. There are 504

decomposition relationships in the model, where 238 of

them are mandatory-relationships, 234 of them are optional-

relationships, 16 of them are or-relationships, and 16 of

them are alternative-relationships.

Fig. 4. Attributed model for AnalogFrontEnd.

360

International Journal of Computer and Electrical Engineering, Vol. 6, No. 4, August 2014

There are 36 cross-tree constraints in the model.

FeatureIDE allows defining constraints with the logical

operators such as implies, iff, and, or, not. For example, in

the feature model “DVB_S implies QPSK” was defined as

constraint because in DVB_S the data is modulated on the

carriers with QPSK. Although we cannot use excludes

operator in FeatureIDE, using iff and not operators achieves

the same effect. Our most complex cross-tree constraint has

9 logical connectives: DVB_S2 iff

(TransportStreamDVBS2 and ProfileLevelDVBS2 and

AudioDecodingDVBS2 and AudioModeDVBS2 and

SamplingFrequencyDVBS2 and DataRatesDVBS2 and

DigitalFrontEnd_DVBS2 and Demodulation_DVBS2 and

SignalLevel_DVBS2). The Feature Glossary constructed in

the domain analysis stage was utilized in this process as it

provides information about the features.

IV. TRANSFORMATION

Having constructed the model with FeatureIDE, we now

have an XML based feature model to be analyzed in FAMA

tool. Therefore, at this point we need a translation from the

feature model in XML to the FAMA input format AFM. A

parser was developed for this purpose. DOM which is the

Standard Java API was used. The javax.xml.parsers package

which is a JAXP package was used to obtain a DOM parser

and to parse the file into a DOM Document object while

org.w3c.dom package and its subpackages were use for

traversing the document.

The parser takes the feature model which is in XML

format as an input and transforms it to the AFM format. The

whole XML document was parsed as a Document Model.

After that, necessary information was subtracted and

transformed to the corresponding AFM components. Below

we presented some diagrams which were drawn in a

drawing tool [11] for a clear understanding of the

FeatureIDE's format and its corresponding component in

AFM format derived using parser. In Fig. 6, general

representation of transformation can be seen on an example.

Parser also identifies feature attributes considering

naming convention mentioned before. According to our

naming convention, the name of this child features start with

“vp”. Actually the reason of this was to indicate that its

child is attributed feature. The value of the attribute was

extracted taking the number after the double after the double

underscore character. The attribute value was written after

the line %Attributes. According to FAMA’s format, a

feature’s attributes are defined with their type, domain

default value and null value which, is the value when the

feature is not selected.

Fig. 6. Mapping of complex relationships.

Fig. 7. Mapping of complex constraints.

361

International Journal of Computer and Electrical Engineering, Vol. 6, No. 4, August 2014

V. ANALYZING THE FEATURE MODEL

We used FAMA standalone distribution, version 1.1.2. It

is a Java library which can be easily integrated into Java

projects.

FAMA operations applied in this study are Validation,

Products, Number of Products, Valid Product, Invalid

Product Explanation, Valid Configuration, Error Detection,

and Error Explanations [12]. FAMA can use different

solvers (Choco, ChocoAttributed, Sat4j, JavaBDD and

JaCoP). However, presently, only Choco provides both

standard and extended model support. Therefore we used

Choco [8] for all performance measurements.

The run time of the operations is about a second using the

full model in most cases. For the Invalid Product

Explanation, it depends on the structure of the input product.

When input product has too many options to repair an

invalid product for a given model, it takes more time. For

example, in our model, when this question gives 6 different

suggestions for an input, the run time is 10 seconds.

However for Products and Number of Products questions,

we were encountered a performance problem. As number of

features in our model is high, all possible products that can

be extracted from the model can be tremendous. (See Fig. 7).

Actually it is impossible with an ordinary personal

computer. The properties and the hardware configurations of

the PC by which this study was done as follows: Windows 7

OS, Intel Core i7 CPU, 2.20 GHz, 8 GB RAM, 64 bit OS,

400 GB HDD. Therefore, to test Products question, a very

reduced version of our feature model was used as input

After that we increased feature number in the model and

performed this analysis again and again. Some of the results

can be seen in the Table I. When the model gets a bit more

complicated, # of products increases exponentially. Another

observation that can be deduced from these two analyses is

that when we just increased variant feature -added a variant

feature to the model-, both time spent and number of

products were increased whereas when we increased core

feature number, time spent was increased but number of

products did not change. Moreover a variant feature can be a

child with or/and/alternative-relationships. As an example,

we can give out27.afm, out27v2.afm and out27v3.afm

feature models. For example, Out27.afm was constructed by

adding 2 variant features which have or-relationships to the

Out25.afm. For this input, number of products became 24.

Out27v2.afm was constructed by adding 2 variant features

which has alternative-relationships to the Out25.afm. For

this input, number of products became 16. Out27v3.afm was

constructed by adding 2 variant (optional) features which

have optional-relationships to the Out25.afm. For this input,

number of products became 32. It can be deduced that

adding variants which have optional-relationships increases

the number of products drastically whereas adding variants

which have alternative-relationships increases the number of

products mildly as seen in the Table I.

In this study, for a reduced feature model with 70 features,

Choco calculated all the 3491840 products as seen in the

Table I. When we add more features to this model, we saw

that the same analysis takes more than 6 hours. Therefore

we had to stop the analysis runs with larger models. Number

of Products question is, in essence, the same as the Products

question. However the only difference is in the time spent as

seen in the Fig. 8, because calculating all possible products

takes much more time than just calculating number of those

products. In the Fig. 8, the y-axis shows the time spent in

minutes. Therefore analysis of number of products can be

done with the models with more features. In our model

which has 79 features, the run time of this analysis takes 295

minutes. However, when the variant feature number is

increased at each input, time spent for run is also increased.

For example, in the model having 80 features, it took more

than 6 hours. So it is not practical to analyze more crowded

models with this question.

Fig. 8. Products/number of products run time analysis diagram.

TABLE I: PRODUCTS ANALYSIS

Input file

of

featu-
res

of
core

featu-

res

of
variant

featu-

res

Time spent
of

products

Out24.
afm

24 21 3 1 seconds 8

Out25.

afm
25 22 3 1 seconds 8

Out27.
afm

27 22 5 1 seconds 24

Out27v2.

 .afm
27 22 5 1 seconds 16

Out27v3.
 .afm

27 22 5 1 seconds 32

Out35.

afm
35 30 5 1 seconds 24

Out40.
afm

40 30 10 1 seconds 768

Out45.

afm
45 35 10 1 seconds 768

Out50.

afm
50 35 15 2 seconds 23808

Out55.

afm
55 40 15 3 seconds 23808

Out60.

afm
60 40 20 5 seconds 119040

Out65.

afm
65 43 22 16 seconds 396800

Out70.
afm

70 44 26 11 minutes 3491840

Out71.

afm
71 44 27

More than

6 hours

Using FAMA analysis, we can improve models or fix

invalid products. For example, Invalid Product Explanation

provides suggestions to fix an invalid product. Error

Detection question detects erroneous cases, such as dead

362

International Journal of Computer and Electrical Engineering, Vol. 6, No. 4, August 2014

feature, false mandatory, wrong cardinality and void model.

Error Explanations question looks for explanations for

detected errors in terms of relationships. For example, when

we ran our model with Error Detection, we got false

mandatory error. Running Error Explanations analysis we

got the following results:

False-mandatory Feature: HDReady

Relation: HD -> FullHD HDReady

Relation: HD -> HDReady

Relation: FullHD IMPLIES HDReady

As seen in the results, HDReady is a false-mandatory

feature. This analysis not only tells that HDReady is a false-

mandatory feature, but also gives possible reasons of this

error. The relations seen in the outputs are the explanations

for the errors. They help us to detect the error reason and fix

the error. The analysis gave us three relations. When we

inspected first two relations, we saw that HD is the parent of

two features namely FullHD, HDReady and these children

have or-relationships. Therefore they are not mandatory.

However, when the third relation (FullHD IMPLIES

HDReady) was inspected, it can be deduced that HDReady

should be selected in every possible product. Actually there

are three possible product configurations related to those

features. As at least one of the children of HD should be

selected, for the first configuration, we chose FullHD.

Because of the constraint (FullHD IMPLIES HDReady),

HDReady should also be selected. For the second

configuration, we chose HDReady. Lastly, for the third

configuration both of these children were selected.

Therefore, in all there possible configurations, HDReady

was selected. So it is false mandatory, in other words, it

must be in every product, although it was defined as

optional.

In the light of this error explanation, some changes were

made to the model. As told earlier, HDReady should be

mandatory. Therefore or-relationships had been converted to

mandatory-relationship and optional relationship. HDReady

was made a mandatory feature and other child features were

made optional.

VI. CONCLUSION

In this article, a feature model for a commercial TV set

family has been introduced for dealing with the

commonality and variability in terms of feature models and

enabling automated analysis. Although our SPL domain is

applicable to an extended feature model as it has attributes,

in the modeling part we used basic feature model. However,

in the translation part, this model was converted back to the

extended feature model and analysis operations were applied

on this extended feature model.

In the modeling part of the study, we used FeatureIDE.

Although graphical modeling tools make the modeling

process easier for non-technical people such as customers,

they are not efficient and sometimes not fully functional

while working with large feature diagrams and complex

constraints. Besides, the capability of FeatureIDE is limited

such that expressing attributed feature models is not possible.

As the model gets larger, using constraint editor gets harder.

Sometimes it slows down so much that using a constraint

editor would become impossible at some point. However,

even with the really large feature models, managing

constraints from the XML file of the model in FeatureIDE is

still possible. Therefore FeatureIDE is still an effective tool

for realistic feature modeling.

In the analysis part, all the FAMA operations for

extended feature models were used in the study. We saw

that, using some analysis operations such as Products and

Number of Products, takes too much time when the number

of features in the model reaches a certain threshold. Faster

heuristics for solving constraint satisfaction problems is an

active research area. Apart from these, FAMA framework is

found useful and flexible for feature model analysis.

The main contribution of this work is the modeling

experience gained by researchers and developers working on

a commercial product family. Use of model transformations

for tool integration is well understood. This work applies

model-driven engineering principles to tool integration in

the domain of feature modeling.

Most analyses are clearly impossible without using an

automated analysis tool like FAMA. These analyses

suggested improvements for the model and solutions to fix

the errors, and helped the model, proposed solutions to fix

the errors, and helped developers to understand model better.

Therefore money and time can be saved as a result of the

analyses in the early stages of development.

REFERENCES

[1] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Nowak, and A. S.

Peterson, “Feature-oriented domain analysis (FODA) feasibility
study,” Technical Report, Software Engineering Institute, Carnegie

Mellon University, November 1990.

[2] J. Coplien, D. Hoffman, and D. Weiss, “Commonality and variability
in software engineering,” IEEE Software, vol. 15, no. 6, pp. 37-45,

November 1998.

[3] M. S. Alencar, Digital Television Systems, Cambridge University
Press, 2009.

[4] C. A. Poynton, Digital Video and HDTV: Algorithms and Interfaces,

Morgan Kaufmann Publishers, Amsterdam, Boston, 2003.
[5] H. Benoit, Digital Television MPEG-1, MPEG-2 and Principles of the

DVB System, Wiley Sons Inc, New York, 1997.

[6] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T.
Leich, “FeatureIDE: An extensible framework for feature-oriented

software development,” Science of Computer Programming, vol. 79,

pp. 70-85, January 2014.
[7] FAMA Framework. (November 25, 2013). [Online]. Available:

http://www.isa.us.es/fama/?Fama_Framework.

[8] Choco-solver. [Online]. Available: http://choco-solver.net/. Accessed
November 20, 2013.

[9] G. Arango. Domain analysis methods. In W. Schafer, R. Prieto-Diaz,

and M. Matsumoto, editors, Software Reusability, chapter 2, pages
17-49. Ellis Horwood, London, UK, 1994.

[10] J. Estublier and G. Vega, “Reuse and variability in large software
applications,” in Proc. the 10th European Software Engineering

Conference Held Jointly with 13th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, 2005, pp. 316-
325.

[11] Creatly. (November 29, 2013). [Online]. Available:

http://creately.com/
[12] FAMA user manual. [Online]. Available:

http://www.isa.us.es/fama/?Documentation/

Gülseren Fedakar Gönül received her B.S. degree

and M.S. degree in computer engineering from the
Middle East Technical University (METU) in 2010

and 2013 respectively. Her research is focused on the

area of feature modeling, software product line, and
variability management on her thesis. She is presently

working as a software developer at Social Security

Institution of Turkey.

363

International Journal of Computer and Electrical Engineering, Vol. 6, No. 4, August 2014

http://www.isa.us.es/fama/?Documentation/

Halit Oğuztüzün is an associate professor in the

Department of Computer Engineering at Middle East

Technical University (METU), Ankara, Turkey. He

obtained his BS and MS degrees in computer

engineering from METU in 1982 and 1984, and PhD

in computer science from University of Iowa, Iowa
City, IA, USA in 1991. His current research interests

include model-driven engineering and distributed

simulation.

Ahmet Serkan Karataş is a part-time lecturer in the

Department of Computer Engineering at Middle East

Technical University (METU), Ankara, Turkey. He

obtained his BS, MS and PhD degrees in computer

engineering from METU in 1998, 2000 and 2010

respectively. His current research interests include
variability modeling and management in software

product lines.

364

International Journal of Computer and Electrical Engineering, Vol. 6, No. 4, August 2014

