
 

Abstract—This paper presents a feature modeling endeavour 

for a television set product family by a major consumer 

electronics company. This work consists of three stages. First, a 

feature model is constructed, based on the analysis of the 

product family requirements. The constructed model is 

supplemented with a feature glossary. FeatureIDE is used as 

the model editor. Feature attributes, not supported by 

FeatureIDE, are represented in the basic feature model by 

using additional features. Second, the feature model in XML is 

converted into the schema of the analysis tool, using a custom 

parser developed for this purpose. Third, the model is analyzed 

by well-known analysis operations. FAMA is used as the 

analysis tool. Performance results are obtained. Finally, lessons 

learned from the whole effort are discussed. 

 
Index Terms—Feature modeling, extended feature model, 

software product lines, commonality, variability, variability 

management. 

 

I. INTRODUCTION 

In consumer electronics industry the focus is shifting 

from single products to product families, thus, from project 

organization to product line organization. Thanks to the 

Software Product Line Engineering (SPLE), it gets easier to 

configure products for various customer needs, thus, the 

time for producing new products reduces. In the context of 

software product line engineering, feature models are used 

for modeling variability and commonality in product 

families. Feature modeling was proposed as a part of the 

Feature Oriented Domain Analysis (FODA) [1]. FODA 

defines important and distinctive system characteristics, 

which influence user experience, as features. Variability and 

commonality in a product family can be expressed and 

managed using feature models. In [2] it is stated that 

inspecting commonality and variability in a systematic way 

during the domain analysis supports product family 

identification. 

A digital TV [3]-[5] can be described as the point where 

the computer and the television meet. Similar to computers, 

TVs that possess digital TV characteristics have an 

operating system, internet access, online services, software 

applications, etc. In digital TVs, plenty of operations can be 

realized by adding new features to them. These features are 

in a wide variety such as picture transfer via USB/DLNA 

from mobile phone, tablet or PC, saving a broadcast by 

television as a video without needing any external device, 

 
Manuscript received December 10, 2013; revised April 8, 2014. 

The authors are with the Department of Computer Engineering, Middle 

East Technical University, Ankara, 06531, Turkey (e-mail: 
gulseren.fedakar@gmail.com, oguztuzn@ceng.metu.edu.tr, 

karatas@ceng.metu.edu.tr). 

video-conference systems, connecting to the internet via TV, 

using social media applications, etc. Digital TV product line 

serves as a challenging example for variability and 

commonality management in the framework of SPLs as 

there is an increasing demand in the sector due to changing 

customer needs and expanding set of features that the 

products can have.  

In this study, variability and commonality in an industrial 

embedded software product family is modeled using feature 

models. “Smart TV” product line of a major consumer 

electronics company in Turkey, which is a digital TV and 

will be referred here as the NewGenTV product line, is used 

as the case study. First, we constructed the feature model for 

the NewGenTV product line. During this process we used 

FeatureIDE [6] as the modeling editor. As FeatureIDE does 

not support feature attributes but some of our features have 

them, we adopted a method, which will be discussed in 

Section III, to define feature attributes as features. Next, we 

performed a translation which takes feature model in XML 

format as input and converts it to the AFM format of FAMA 

[7], [8]. Finally we used FAMA to perform automated 

analyses on the model.  

 

II. BACKGROUND 

FeatureIDE is an open-source framework for feature 

oriented software development (FOSD) [6]. It is built on 

Eclipse and can work smoothly with large models. It has a 

GUI view that enables model editing via a graphical 

interface. It can generate an XML-based representation of 

the edited model. However, its present version does not 

support feature attributes.  

FAMA is an automated analyses framework for feature 

models. FAMA integrates a number of commonly used 

reasoners such as Choco, Sat4j, JavaBDD, and JaCoP, 

where it selects the most efficient solver automatically in 

run time for the best performance considering the operation 

in use. It can operate on both the basic and the extended 

feature models. In FAMA, domains of the attributes consist 

of integers. Moreover, attributes can be used in constraints.  

 

III. FEATURE MODELING 

We started our study with the domain analysis phase. In 

this phase, we adopted the strategy reported in [9] and 

initially completed the domain characterization and project 

planning tasks. Then, we performed domain analysis steps 

such as data collection, data analysis, classification, and 

evaluation of the model iteratively. Thus, we revised our 

model repeatedly. During these iterations, we identified the 

features and their attributes, feature grouping characteristics, 
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common and variable features, relationships and 

dependencies between the features, and the constraints in the 

family. To overcome the problems we encountered, we 

performed an extensive literature survey on the related fields, 

conducted interviews with the domain experts from the 

company, and received continuous feedback from the 

experts, who constantly reviewed the evolving feature 

model. For the data collection step, we started by collecting 

information from the domain experts, product 

documentation, and publications on digital TVs [3]-[5]. This 

data were mainly a bunch of vague information for the 

people other than domain experts before we chose 

appropriate ones and extracted them as features. Next, for 

the analysis step, we analyzed the collected information in 

order to detect the reusable features and identify some of the 

similarities and differences among them. We also started to 

build a Feature Glossary, which has been repeatedly revised 

along with the model as the domain analysis continued, that 

explains terms, concepts, and standards about the domain 

that appear in the feature model such as DVB-S, HDMI, TV 

Tuner, PIP, PAP, etc. Then, in the classification step, we 

abstracted the features according to their descriptions and 

relevance to common concepts, and created groups that 

consist of similar features. Finally, after eliminating the 

errors, contradictions, and gaps, we obtained a primary 

model that presents 23 conceptual groups when all 

characteristics are considered. These conceptual groups 

were presented as children of root feature as seen in the Fig. 

1. Moreover, the model also included the primary 

dependencies in the form of constraints. 

 

 
Fig. 1. Conceptual groups of feature model. 

 

In the following subsections we discuss some of the key 

tasks in the domain analysis phase, and finally present the 

important characteristics of the resulting model. 

A. Feature Identification 

Identification of features involves abstracting domain 

knowledge obtained from domain analysis. In general, 

features can be classified into four categories: capability 

features, operating environment features, domain technology 

features and implementation features [10]. 

Capability features typically have user visible properties 

[10]. We identified 345 capability features in NewGenTV. 

This category includes features such as 

ChannelBandwithForAnalog, which is a non-functional 

characteristic of the system, ManualSearch, which is a 

distinct service provided for user and listed in the user 

manual, and AFT, which is an internal function to provide a 

service.  

Operating environment features are the features which are 

related to the environment (hardware and software) in which 

the system is used and are related to communication of this 

system with external systems [10]. We identified 14 

operating environment features in NewGenTV. For example, 

in our model CPUPower and RAMPower are the operating 

environment features. Also LineoutOutput feature is 

operating environment features as it is related to the port 

that speakers connected to. 

Domain technology features are the features which are 

specifically related to the domain and may not be 

meaningful in other domains [10]. They indicate the 

techniques of implementing operations or services. We 

identified 221 domain technology features in NewGenTV. 

This category includes features such as DVB_T, which is a 

Digital Video Broadcasting standard for television, and 

NTSC, which is an analogue television color encoding 

system standard.  

Implementation features are generic functions or 

technologies which can also be used in other domains [10].  

They are used to implement other features. We identified 

17 implementation features in NewGenTV. This category 

includes features such as 

LNBpowerAndPolarization_DVBS2, which is used to 

implement a satellite TV, and DiseqC12Support, which is a 

communication protocol for use between a satellite receiver 

and a device such as a multi-dish switch or a small dish 

antenna rotor.  

B. Feature Model Organization 

After the feature identification step a hierarchical model 

is created by classifying and structuring the features using 

their relationships. First, we have identified 23 conceptual 

groups, groups of features that are related to each other, in 
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the model. Then, we added each feature as a child to the 

feature that represents the conceptual group it belongs to.  

The elements of this feature model have basic 

decompositional relationships. These are mandatory-

relationships, optional-relationships, or-relationships, 

alternative-relationships as seen in the Fig. 2. Also cross-

tree constraints, which allow for the specification of further 

dependencies among hierarchically unrelated features, are 

added to the model. For example, as seen in the Fig. 3, the 

constraint DigitalProgramStorageT_C implies (DVB_T or 

DVB_C or DVB_T2). As DigitalProgramStorageT_C is 

only applicable to terrestrial or cable broadcasts, it implies 

that DVB_T or DVB_C or DVB_T2 is selected.  

 

 
Fig. 2. Feature model relationships. 

 

Fig. 3. Constraints. 

 

C. Defining Feature Attributes 

FeatureIDE version 2.6.2 [6], which is the version we 

used in this study, has no representation for features with 

attributes. However, in our model there exist some features 

with attributes. Therefore, we adopted a method to represent 

feature attributes in FeatureIDE. Using this method, we 

constructed a basic feature model to mimic the extended 

model we have. 

For each feature that has attribute(s), a new feature that 

denotes a variation point is added as a child, connected 

using the mandatory relation to its father, the feature with 

attribute(s). We use the prefix “vp” in the names of such 

features to indicate that they represent a variation point. In 

general, the naming convention we use for the variation 

point features is as follows: “vp”+ parent feature name + 

“_in”+ unit type. Next, we added a new feature for each 

possible value that an attribute can take, and connected these 

new features (i.e. variants) to the variation point feature.  

When there is only one possible value we used the 

mandatory relation for the connection. On the other hand, 

when there are two or more values, we used or relation since 

a product can support any non-empty subset of these values. 

The naming convention we used for the features 

representing possible attribute values are as follows: parent 

feature name + “__” + value. For example, as presented in 

Fig. 4, the feature ArealInputImpedance has an attribute that 

can take the value 75 Ohm and the feature 

ChannelBandwidthForAnalog has an attribute that can take 

two possible values, namely 7 MHz and 8 MHz.  

When the possible value an attribute can take is a range, 

we applied a slight modification to our naming convention, 

and inserted the string “to” between the end minimum and 

maximum values of the range. For instance, if the value an 

attribute can take is the range 47-77, then we used “47to77” 

as the possible value as seen in the Fig. 5. 

 

 
Fig. 5. Attributed model for ranged values. 

 

At the end of modeling process, the feature model we 

obtained contained a single root feature named 

NewGenTVSPL (level-0) and 23 main feature groups (level-

1). After adding all the features to the model, we obtained a 

model that has 621 features in total, including the root 

feature. The feature diagram that represents this model has 

427 internal nodes (i.e. 427 features are further decomposed 

into other features) and 194 leaves. The longest path from 

the root feature to a leaf feature consists of 4 decomposition 

relations. The average number of children for parent features 

is 2.2. However, there are some extreme cases. For example, 

the feature ICProperties has 42 child features. There are 504 

decomposition relationships in the model, where 238 of 

them are mandatory-relationships, 234 of them are optional-

relationships, 16 of them are or-relationships, and 16 of 

them are alternative-relationships. 

 
Fig. 4. Attributed model for AnalogFrontEnd. 
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There are 36 cross-tree constraints in the model. 

FeatureIDE allows defining constraints with the logical 

operators such as implies, iff, and, or, not. For example, in 

the feature model “DVB_S implies QPSK” was defined as 

constraint because in DVB_S the data is modulated on the 

carriers with QPSK. Although we cannot use excludes 

operator in FeatureIDE, using iff and not operators achieves 

the same effect. Our most complex cross-tree constraint has 

9 logical connectives: DVB_S2 iff 

( TransportStreamDVBS2 and ProfileLevelDVBS2 and 

AudioDecodingDVBS2 and AudioModeDVBS2 and 

SamplingFrequencyDVBS2 and DataRatesDVBS2 and 

DigitalFrontEnd_DVBS2 and Demodulation_DVBS2 and 

SignalLevel_DVBS2 ). The Feature Glossary constructed in 

the domain analysis stage was utilized in this process as it 

provides information about the features. 

 

IV. TRANSFORMATION 

Having constructed the model with FeatureIDE, we now 

have an XML based feature model to be analyzed in FAMA 

tool. Therefore, at this point we need a translation from the 

feature model in XML to the FAMA input format AFM. A 

parser was developed for this purpose. DOM which is the 

Standard Java API was used. The javax.xml.parsers package 

which is a JAXP package was used to obtain a DOM parser 

and to parse the file into a DOM Document object while 

org.w3c.dom package and its subpackages were use for 

traversing the document. 

The parser takes the feature model which is in XML 

format as an input and transforms it to the AFM format. The 

whole XML document was parsed as a Document Model. 

After that, necessary information was subtracted and 

transformed to the corresponding AFM components. Below 

we presented some diagrams which were drawn in a 

drawing tool [11] for a clear understanding of the 

FeatureIDE's format and its corresponding component in 

AFM format derived using parser. In Fig. 6, general 

representation of transformation can be seen on an example.  

Parser also identifies feature attributes considering 

naming convention mentioned before. According to our 

naming convention, the name of this child features start with 

“vp”. Actually the reason of this was to indicate that its 

child is attributed feature. The value of the attribute was 

extracted taking the number after the double after the double 

underscore character. The attribute value was written after 

the line %Attributes. According to FAMA’s format, a 

feature’s attributes are defined with their type, domain 

default value and null value which, is the value when the 

feature is not selected. 

 
Fig. 6. Mapping of complex relationships. 

 

 
Fig. 7. Mapping of complex constraints.
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V. ANALYZING THE FEATURE MODEL 

We used FAMA standalone distribution, version 1.1.2. It 

is a Java library which can be easily integrated into Java 

projects.  

FAMA operations applied in this study are Validation, 

Products, Number of Products, Valid Product, Invalid 

Product Explanation, Valid Configuration, Error Detection, 

and Error Explanations [12]. FAMA can use different 

solvers (Choco, ChocoAttributed, Sat4j, JavaBDD and 

JaCoP). However, presently, only Choco provides both 

standard and extended model support. Therefore we used 

Choco [8] for all performance measurements. 

The run time of the operations is about a second using the 

full model in most cases. For the Invalid Product 

Explanation, it depends on the structure of the input product. 

When input product has too many options to repair an 

invalid product for a given model, it takes more time. For 

example, in our model, when this question gives 6 different 

suggestions for an input, the run time is 10 seconds. 

However for Products and Number of Products questions, 

we were encountered a performance problem. As number of 

features in our model is high, all possible products that can 

be extracted from the model can be tremendous. (See Fig. 7). 

Actually it is impossible with an ordinary personal 

computer. The properties and the hardware configurations of 

the PC by which this study was done as follows: Windows 7 

OS, Intel Core i7 CPU, 2.20 GHz, 8 GB RAM, 64 bit OS, 

400 GB HDD. Therefore, to test Products question, a very 

reduced version of our feature model was used as input 

After that we increased feature number in the model and 

performed this analysis again and again. Some of the results 

can be seen in the Table I. When the model gets a bit more 

complicated, # of products increases exponentially. Another 

observation that can be deduced from these two analyses is 

that when we just increased variant feature -added a variant 

feature to the model-, both time spent and number of 

products were increased whereas when we increased core 

feature number, time spent was increased but number of 

products did not change. Moreover a variant feature can be a 

child with or/and/alternative-relationships. As an example, 

we can give out27.afm, out27v2.afm and out27v3.afm 

feature models. For example, Out27.afm was constructed by 

adding 2 variant features which have or-relationships to the 

Out25.afm. For this input, number of products became 24. 

Out27v2.afm was constructed by adding 2 variant features 

which has alternative-relationships to the Out25.afm. For 

this input, number of products became 16. Out27v3.afm was 

constructed by adding 2 variant (optional) features which 

have optional-relationships to the Out25.afm. For this input, 

number of products became 32. It can be deduced that 

adding variants which have optional-relationships increases 

the number of products drastically whereas adding variants 

which have alternative-relationships increases the number of 

products mildly as seen in the Table I. 

In this study, for a reduced feature model with 70 features, 

Choco calculated all the 3491840 products as seen in the 

Table I. When we add more features to this model, we saw 

that the same analysis takes more than 6 hours. Therefore 

we had to stop the analysis runs with larger models. Number 

of Products question is, in essence, the same as the Products 

question. However the only difference is in the time spent as 

seen in the Fig. 8, because calculating all possible products 

takes much more time than just calculating number of those 

products. In the Fig. 8, the y-axis shows the time spent in 

minutes. Therefore analysis of number of products can be 

done with the models with more features. In our model 

which has 79 features, the run time of this analysis takes 295 

minutes. However, when the variant feature number is 

increased at each input, time spent for run is also increased. 

For example, in the model having 80 features, it took more 

than 6 hours. So it is not practical to analyze more crowded 

models with this question.  

 

 
Fig. 8. Products/number of products run time analysis diagram. 

 
TABLE I: PRODUCTS ANALYSIS 

Input file 

# of 

featu- 
res 

# of 
core 

featu-

res 

# of 
variant 

featu-

res 

Time spent 
# of 

products 

Out24. 
afm 

24 21 3 1 seconds 8 

Out25. 

afm 
25 22 3 1 seconds 8 

Out27. 
afm 

27 22 5 1 seconds 24 

Out27v2.

 .afm 
27 22 5 1 seconds 16 

Out27v3.
 .afm 

27 22 5 1 seconds 32 

Out35. 

afm 
35 30 5 1 seconds 24 

Out40. 
afm 

40 30 10 1 seconds 768 

Out45. 

afm 
45 35 10 1 seconds 768 

Out50. 

afm 
50 35 15 2 seconds 23808 

Out55. 

afm 
55 40 15 3 seconds 23808 

Out60. 

afm 
60 40 20 5 seconds 119040 

Out65. 

afm 
65 43 22 16 seconds 396800 

Out70. 
afm 

70 44 26 11 minutes 3491840 

Out71. 

afm 
71 44 27 

More than 

6 hours 
 

 

Using FAMA analysis, we can improve models or fix 

invalid products. For example, Invalid Product Explanation 

provides suggestions to fix an invalid product. Error 

Detection question detects erroneous cases, such as dead 
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feature, false mandatory, wrong cardinality and void model. 

Error Explanations question looks for explanations for 

detected errors in terms of relationships. For example, when 

we ran our model with Error Detection, we got false 

mandatory error. Running Error Explanations analysis we 

got the following results: 

False-mandatory Feature: HDReady 

Relation: HD -> FullHD HDReady 

Relation: HD -> HDReady 

Relation: FullHD IMPLIES HDReady 

As seen in the results, HDReady is a false-mandatory 

feature. This analysis not only tells that HDReady is a false-

mandatory feature, but also gives possible reasons of this 

error. The relations seen in the outputs are the explanations 

for the errors. They help us to detect the error reason and fix 

the error. The analysis gave us three relations. When we 

inspected first two relations, we saw that HD is the parent of 

two features namely FullHD, HDReady and these children 

have or-relationships. Therefore they are not mandatory. 

However, when the third relation (FullHD IMPLIES 

HDReady) was inspected, it can be deduced that HDReady 

should be selected in every possible product. Actually there 

are three possible product configurations related to those 

features. As at least one of the children of HD should be 

selected, for the first configuration, we chose FullHD. 

Because of the constraint (FullHD IMPLIES HDReady), 

HDReady should also be selected. For the second 

configuration, we chose HDReady. Lastly, for the third 

configuration both of these children were selected. 

Therefore, in all there possible configurations, HDReady 

was selected. So it is false mandatory, in other words, it 

must be in every product, although it was defined as 

optional. 

In the light of this error explanation, some changes were 

made to the model. As told earlier, HDReady should be 

mandatory. Therefore or-relationships had been converted to 

mandatory-relationship and optional relationship. HDReady 

was made a mandatory feature and other child features were 

made optional. 

 

VI. CONCLUSION 

In this article, a feature model for a commercial TV set 

family has been introduced for dealing with the 

commonality and variability in terms of feature models and 

enabling automated analysis. Although our SPL domain is 

applicable to an extended feature model as it has attributes, 

in the modeling part we used basic feature model. However, 

in the translation part, this model was converted back to the 

extended feature model and analysis operations were applied 

on this extended feature model.  

In the modeling part of the study, we used FeatureIDE. 

Although graphical modeling tools make the modeling 

process easier for non-technical people such as customers, 

they are not efficient and sometimes not fully functional 

while working with large feature diagrams and complex 

constraints. Besides, the capability of FeatureIDE is limited 

such that expressing attributed feature models is not possible. 

As the model gets larger, using constraint editor gets harder. 

Sometimes it slows down so much that using a constraint 

editor would become impossible at some point. However, 

even with the really large feature models, managing 

constraints from the XML file of the model in FeatureIDE is 

still possible. Therefore FeatureIDE is still an effective tool 

for realistic feature modeling. 

In the analysis part, all the FAMA operations for 

extended feature models were used in the study. We saw 

that, using some analysis operations such as Products and 

Number of Products, takes too much time when the number 

of features in the model reaches a certain threshold. Faster 

heuristics for solving constraint satisfaction problems is an 

active research area. Apart from these, FAMA framework is 

found useful and flexible for feature model analysis. 

The main contribution of this work is the modeling 

experience gained by researchers and developers working on 

a commercial product family. Use of model transformations 

for tool integration is well understood. This work applies 

model-driven engineering principles to tool integration in 

the domain of feature modeling. 

Most analyses are clearly impossible without using an 

automated analysis tool like FAMA. These analyses 

suggested improvements for the model and solutions to fix 

the errors, and helped the model, proposed solutions to fix 

the errors, and helped developers to understand model better. 

Therefore money and time can be saved as a result of the 

analyses in the early stages of development. 
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