
  
Abstract—Finger print readers and retinal eye scanners 

have been an integral aspect of research and space 
organisations, forensic tests and so on. But to use it on a daily 
basis, Image compression is a necessary aspect considering the 
huge population of our country. Wavelet transform provides a 
platform for this process. In this paper, a novel idea to 
implement wavelet transform based on Daubechies wavelets 
has been discussed. The paper also discusses the concepts of 
linear transform, quantization, dequantization and image 
denoising. The image is first transformed using discrete 
wavelet transform to obtain the wavelet coefficients. The 
process of image compression is achieved by quantizing and 
encoding the coefficients. Uniform scalar quantization is done 
on the basis function coefficients in order to reduce their 
precision by reducing the number of bits required to store the 
transformed coefficients. The resulting quantized coefficients 
are then encoded using Huffman entropy encoding.  In order to 
ensure that the image is free from disturbances like noise 
signals, denoising technique has been implemented using the 
wavelet coefficients. A paper of such an application has been 
proposed to tackle the global phenomenon of terrorism 
through the use of biometric devices including finger print 
reader and retinal eye scanner. 

 
Index Terms—DWT, WSQ, encoder, quantization, 

denoising, huffmann encoding.  
 

I. INTRODUCTION 
The worrying factor for all countries in recent times is the 

raise in Terrorism. Even though the intelligence network is 
much stronger in our country still the terrorists are attacking. 
One of the methods is to keep a regular check on the number 
of people entering and leaving the country i.e. traveling 
through airplane, ships or railways. Hence, a census of the 
normal people and the suspects can help in combating terror 
by taking actions at the right time. The various scanning and 
tracking equipments include finger print technology, thermal 
sensors, retinal eye scanners and even camera lens images. 
Retina scanners work using the reflection of infrared light 
off the retina. As infrared light is directed into the eye,some 
of the light is absorbed, while other light is reflected back to 
the scanner. The blood vessels on the retina absorb more 
light, reflecting less light than the tissue surrounding the 
vessels. The retinal scanner measures the amount and 
intensity of the light that is reflected back off the eye in 320 
places. It then assigns an intensity grade between zero and 
4,095. The resulting numbers are compressed into an 80-
byte computer code. This code can then be compared with 
patterns that have already been entered into the computer's 
data base. Each time the eye is scanned, the code is 
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compared to other codes in the database to verify identity. 
Retina scanning is one of the most accurate biometric 
security measures available, because the retina patterns are 
difficult to fake and even the retinas of a dead person will 
change soon after they have died. Retina scans are so 
accurate in discovering identity that the identity error rate is 
estimated to be only one in every million. 
The  

Important security equipment is the finger print recorder. 
On an average, if the finger print instruments are used in 
places of employment, airports, railway stations, shipyards, 
etc, it would amount to nearly 1000 million cards of 
fingerprints, of which a few percent belongs to the usual 
suspects (bad guys tend to get fingerprinted more than once).  
And to make matters worse, fingerprint data continues to 
accumulate at a rate of 30,000-50,000 new cards PER DAY. 
India's fingerprint database can be digitized at 500 dots per 
inch with 8 bits of grayscale resolution. At this rate, a single 
fingerprint card turns into about 10 MB of data. When this 
gets multiplied by the 1000 million people, it comes to 
around 10,000 terabytes. Similarly, a single image of a 
retinal eye image turns into approximately 5 MB of data. 

Hence, there is a need for some form of data compression. 
A wavelet-based image coding algorithm can be adopted as 
a national standard for digitized fingerprint records. The 
WSQ (Wavelet/Scalar Quantization) utilized for this 
purpose involves: 

• 2-dimensional discrete wavelet transform DWT   
• Uniform scalar quantization 
• Huffman entropy coding  

 

II. THEORY OF WAVELETS 
A wave is an oscillating function of time or space and is 

periodic. In contrast, wavelets are localized waves. They 
have their energy concentrated in time or space and are 
suited to analysis of transient signals. The transform of a 
signal is just another form of representing the signal. It does 
not change the information content present in the signal. The 
Wavelet Transform provides a time-frequency 
representation of the signal. The Wavelet Transform, at high 
frequencies, gives good time resolution and poor frequency 
resolution, while at low frequencies; the Wavelet Transform 
gives good frequency resolution and poor time resolution. 

A. The Discrete Wavelet Transform  
The Discrete Wavelet Transform (DWT), which is based 

on sub-band coding, is found to yield a fast computation of 
Wavelet Transform.  

In CWT, the signals are analyzed using a set of basis 
functions which relate to each other by simple scaling and 
translation. In the case of DWT, a time-scale representation 
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3.12). As the final step we act with the filter on the first four 
elements of this vector:  

We find that the recovered sequence is approximately 
equal to the original sequence. 

F3= (12.4, 2.7,-5.7, 6,-0.8, 0.97, 0.88,-3.1) 
The inverse transformation can be applied to T, resulting 

in lossless compression. Lossy compression can be 
implemented by manually setting to zero the elements below 
a certain threshold in T. The equation of the inverse 
transformation is: 

1
N

T
NA W TW− −=   (Ã = A after lossless compression) 

In assembly, we implemented the matrix multiplication 
using a filter representation of the process. We first applied 
the filter G and H over the rows and then the columns as an 
FIR filter. While performing this step we use a technique 
called down sampling to prevent redundancies. To perform 
this process, we throw away every other result and keep 
only the ones obtained from successive pairs of elements.  

To perform the transformation in DSP we loaded the 
pixel values for the image into DSP memory, process the 
image in the DSP assembly program, and output the 
transformed image, or transformed-compressed image, to a 
memory location below the original image. This data would 
be processed again to recover the original image. To be 
more specific, our original image was loaded at location 
0x1800, the intermediate result, which is the first half of the 
transformation is stored immediately below the original 
image at location 0x1C00. Finally, we store the final output 
directly below this at address 0x2000. Below is a memory 
map showing the addresses used in the memory for the 
intermediate result and final result of our output: 

 
Fig. 4. Shows the memory storage map 

 

IV. STEPS INVOLVED IN IMAGE COMPRESSION 
Two fundamental components of compression are 

redundancy  
Redundancy which aims at removing duplication from the 

signal source (image/video) and Irrelevancy reduction which 
omits parts of the signal that will not be noticed by the 
signal receiver, namely the Human Visual System (HVS). 

Image compression steps 
A source encoder performs linear transform to decorrelate 

the original image data. This process is a lossless one. 
Quantization of basis functions coefficients. This process 

is a lossy one. 
Entropy coding of the resulting quantized values. This 

process is a lossless one. 
A compressed image of the original image is obtained. 

The compressed image is then subjected to the processes 
of decoding, dequantization and inverse transform to obtain 
a reconstructed image. 

A. Linear Transformation 
The coordinate system in which a signal is represented is 

changed in order to make it much better suited for 
processing (compression). All the useful signal features and 
important phenomena should be represented in as compact 
manner as possible.It is important to compact the bulk of the 
coefficients. 

B. Process of Image Compression 
Compression is achieved by quantizing and encoding 

coefficients 
A quantizer simply reduces the number of bits needed to 

store the transformed coefficients by reducing the precision 
of those values. Since this is a many-to-one mapping, it is a 
lossy process and is the main source of compression in an 
encoder. Quantization can be performed on each individual 
coefficient, which is known as Scalar Quantization (SQ).  

Coefficients that correspond to smooth parts of data 
become small. (Indeed, their difference, and therefore their 
associated wavelet coefficient, will be zero, or very close to 
it). So we can throw away these coefficients without 
significantly distorting the image. We can then encode the 
remaining coefficients and transmit them along with the 
overall average value.  

At the encoder, the scalar quantization operation maps a 
given signal value to a quantizer index, which is then 
encoded as part of the compressed bit stream. 

At the decoder, the quantizer index is decoded and 
converted into corresponding quantized value. This process 
is sometimes referred to as Dequantization. 

 
Fig. 5.  Shows a block diagram representation of signal transfer 

 
Once the quantization process is completed, the last 

encoding step is to use entropy coding to achieve the 
entropy rate of quantizer. An entropy encoder further 
compresses the quantized values losslessly to give better 
overall compression. It uses a model to accurately determine 
the probabilities for each quantized value and produces an 
appropriate code based on these probabilities so that the 
resultant output code stream will be smaller than the input 
stream. The most commonly used entropy encoders are the 
Huffman encoder and the arithmetic encoder. 

C. Huffman Coding Algorithm 
• Create a vertical table for the symbols, the best ordering 

being in decreasing order of probability. 
• Form a binary tree to the right of the table. Build the tree 

by merging the two lowest probability symbols at each 
level, making the probability of the node equal to the sum 
of the merged nodes' probabilities.  
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