
  

 

Abstract—System identification is one of the most important 

applications of adaptive filter algorithms. Some systems such as 

echo response that must be identified by the echo canceller have 

sparse nature. Classic adaptive filter algorithms like LMS or 

NLMS have poor performance in this way. Proportionate 

NLMS (PNLMS) algorithm has been developed to make 

improve poorly performance of NLMS in system identification, 

unfortunately it suffers from slow down during adaption 

process. To solve this problem, the concept of proportionate 

adaptation is extended to the normalized subband adaptive 

filter (NSAF), and three types proportionate normalized 

subband adaptive filter (PNSAF) algorithms are established in 

this paper. Proposed algorithms are proportionate normalized 

subband adaptive filter ++ (PNSAF++), the set-membership 

PNSAF (SM-PNSAF) and the set-membership PNSAF++ 

(SM-PNSAF++). Here we demonstrate that PNSAF++ 

algorithm improve the convergence rate of PNSAF in sparse 

channels. The SM-PNSAF and SM-PNSAF++ also exhibit good 

performance with significant reduction in the overall 

computational complexity compared with the ordinary PNSAF. 

The simulation results show good performance of the proposed 

algorithms. 

 
Index Terms—Proportionate normalized subband adaptive 

filter, set-membership, sparse system identification 

 

I. INTRODUCTION 

Adaptive system identification is such an important 

problem especially when the system impulse response is 

sparse. Classic adaptive filter algorithms such as normalized 

least mean squares (NLMS) have low convergence rate in 

identification of sparse channel [1]-[3]. To solve this problem 

the proportionate adaptive filters have been proposed [4]. 

The basic principle of PNLMS is to adapt each coefficient 

with an adaptation gain proportional to its own magnitude. In 

this way this algorithm uses different step-sizes proportional 

to the estimated magnitude of the coefficients for each 

adaptive filter coefficient. PNLMS has much faster initial 

convergence than NLMS when the echo path is sparse. But 

unfortunately, it slows down after initial fast convergence, 

and also this algorithm has poor performance in dispersive 

channels. In [5], the PNLMS++ algorithm was proposed to 

alternate the PNLMS and NLMS algorithms during the 

adaptation. This strategy leads to fast initial convergence and 

at least as fast convergence as the NLMS algorithm later on. 

But PNLMS++ works well for only in the two extreme cases  

When the impulse response is sparse or highly dispersive 

To have fast convergence, low steady-state MSE, and low 
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computational complexity at the same time, the 

set-membership adaptive filter algorithm like 

set-membership normalized LMS (SM-NLMS) has been 

proposed in [6].  

In [7], the subband adaptive algorithm called normalized 

subband adaptive filter (NSAF) was developed based on a 

constrained optimization problem. The filter update equation 

proposed in [7] is similar to what proposed in [8] and [9], 

where the fullband filters are updated instead of subfilters as 

in the conventional SAF structure [10] and [11]. In this paper 

the concept of proportionate adaptation is extended to the 

normalized subband adaptive filter (NSAF), and three 

proportionate normalized subband adaptive filter algorithms 

are established. The proposed proportionate normalized 

subband adaptive filter (PNSAF) are PNSAF++, the 

set-membership PNSAF (SM-PNSAF) and the 

set-membership PNSAF++ (SM-PNSAF++). 

This paper is organized as follows. In section II, we briefly 

review PNLMS, PNLMS++ and also set 

membership-PNLMS. In Section III, NSAF structure will be 

described and PNSAF algorithms are established. In Section 

IV we present several simulation results to show the good 

performance of the proposed algorithms. Finally, the 

conclusion of the paper is presented in Section V. 

 

Fig. 1. Prototypical adaptive filter setup 

 

II. REVIEW OF THE NLMS, PNLMS ,PNLMS++  AND SET 

MEMBERSHIP ALGORITHMS 

In Fig. 1 the prototype of adaptive filter setup illustrated, 

where )(nx , )(nd  and )(ne  are the input, the desired and the 

output error signals, respectively. 
T

M nhnhnhn )](,),(),([)( 110  h is 1M the column  vector of 

filter coefficients at time n . 

The weight vector update equation for PNLMS is given by 

[4]: 
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where )()()()( nnndne T
hx ,   is the regularization 

parameter, and  is the step-size that determines the 

convergence speed and excess mean-square error (EMSE). 

 )(,),(),()( 110 ngngngdiagn M  G  is a diagonal 

matrix that adjusts the step-sizes of the individual taps of the 
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filter. The diagonal elements of )(nG are calculated from the 

following procedure [4]. Parameters δ and ρ are positive 

numbers with typical values δ = 0:01, ρ = 5/M [4]. 

The weight vector for PNLMS++ is similar to PNLMS and 

also NLMS. In fact this algorithm alternate the coefficient 

update between PNLMS and NLMS and gave similar 

performance to PNLMS for sparse systems but with better 

robustness in particular to echo path change [5]. 

Updating rules of PNLMS++ are based on switching between 

PNLMS and NLMS weight vector equations with n as index 

parameter. Consequently, PNLMS and NLMS are used 

alternately at odd and even sample instants n , respectively 

[5], [7]. 

As well as PNLMS, weight vector  for SM-NLMS is given 

by [6]: 
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III. PROPORTIONATE NORMIZED SAF (PNSAF) 

ALGORITHMS 

In subband adaptive filtering (SAF), which proposed in 

[11] the input signal and desired response are 

band-partitioned into almost mutually exclusive subband 

signals. Based on principle of minimum disturbance in [1], 

novel design criterion for the SAF as a constrained 

optimization problem formulated in [12], [13] which 

involved multiple constraints imposed on the updated 

subband filter outputs. From one iteration to the next, these 

multiple subband constraints force each of the almost 

mutually exclusive subbands to converge almost 

independently without any influence from other subbands. 

Fig. 2 shows the structure of NSAF algorithm. 

In this figure, 110 ,,, Nfff  , are analysis filter unit pulse 

responses of an N channel orthogonal perfect reconstruction 

critically sampled filter bank system. )(nix and )(ndi are 

non subsample subband signals. It is important to note that n  

refers to the index of the original sequences and k  denotes 

the index of the decimated sequences1. 

Similar to the NLMS algorithm, the weight vector of 

Normalized subband adaptive filters (NSAF) algorithms 

which had established in[13] is: 
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  where 

 
1 It means that in the SAF, the filter vector update is performed each time 

N  new samples have entered the system. 
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The )()()()( ,, kkkdke T
iDiDi hx  is the decimated subband 

error signal, and   is chosen in the range 20    [13]. The 

value of this parameter determines the convergence speed 

and the steady-state MSE of the NSAF.. 

 
Fig. 2. Structure of NSAF 

 

The weight vector update equation in PNSAF can be stated 

as[13] 
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where  )(,),(),()( 110 kpkpkpdiagk M  P  is a diagonal 

matrix and the diagonal elements of )(kP are calculated from 

the following procedure [4]: 

   )(,)(,,)(,maxmax)( 10 nhnhnhn mMm   

The diagonal elements of )(kP  are given by: 
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In the PNSAF algorithm, different step-sizes is assigned to 

the coefficients based on their current estimated magnitudes 

in each subband.. 

PNSAF updating applies accordingly high adaptation gain 

to these coefficients, causing them to converge quickly, 

thereby obtaining a fast initial reduction in error. A low 

adaptation gain is applied by PNSAF to the coefficients in the 

inactive regions, because of their low amplitude, in order that 

the final misadjustment of the proportionate scheme is no 

worse than comparable non-proportionate schemes. 

Therefore if the current magnitude of a coefficient is large, 

large step-size will be assigned, and vice versa [14]. 
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A. Algorithm II: Proportinate NSAF ++(PNSAF++) 

Based on [5], PNLMS++ is an adaptive algorithm which 

alternate the coefficient update between PNLMS and NLMS. 

correspondingly, this concept could be extended to 

proportionate NSAF structure and the weight vector update 

expected to alternate between PNSAF and NSAF updating 

equation. Based on this idea, we propose a new algorithm 

that uses equations (7) and (4) at same time as it’s update 

rule. This algorithm that we called it PNSAF++ , switches 

between PNSAF and NSAF. When n  takes odd value, 

algorithm will switch to NSAF and similarly algorithm will 

switch to PNSAF if n  takes even. Simulations in section IV 

show that PNSAF++ improves the convergence rate of 

ordinary PNSAF and also NSAF adaptive algorithms. 

B. Algorithm III: Set Membership PNSAF(SM-PNSAF) 

The SM-NSAF that established in [14]  subject to  

 1,1,0,)(  Nkkkk  h 

where 

   hxRh )()(: ,, kkd T
iDi

M
ik



This aim is obtained by an orthogonal projection of the 

previous estimate of h  onto the closest boundary of ik , in 

each subband. Doing this, the filter vector update equation for 

SM-NSAF  stated in [14]  is given by 
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 The same as SM-PNLMS ,the filter vector update 

equation for SM-PNSAF can be stated as 
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In the proportionate algorithm, )(kP will be a diagonal 

matrix. Based on [14], to make a good choice for )(kP , the 

goal is to reduce the length of the initial transient for 

estimating the dominant peaks in the impulse response and, 

thereafter, to emphasize the input-signal direction to avoid a 

slow second transient. Furthermore, the solution should not 

be sensitive to the assumption of a sparse system. Refer to 

[14], as )(k is a good indicator of how close a steady-state 

solution is, the proposed )(kP  is 
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where κ ∈ [0, 1] and 
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i khkh . The constant κ is 

included to increase the robustness for estimation errors in 

)(nh , and from the simulations provided in Section IV,  

5.0 shows good performance for both sparse and 

dispersive systems. For κ = 1, the algorithm will converge 

faster but will be more sensitive to the sparse assumption. 

C. Algoithm IV: Set Membership PNSAF++ 

(SM-PNSAF++) 

Similar to SM-PNSAF, if set membership concept is 

extended to PNSAF++, the new algorithm which is called 

SM-PNSAF++ will be established. The Proposed algorithm 

switches between equations (19) and (21) with index n  

when SM-PNSAF and SM-NSAF are used alternately at odd 

and even sample instants, respectively. Simulations in section 

IV show that this algorithm has similar convergence rate to 

SM-PNSAF. 

 

IV. SIMULATION RESULTS 

We demonstrate the performance of the proposed 

algorithms by several computer simulations in a system 

identification scenario. Two impulse response of the 

unknown systems are shown in Fig. 3. Fig 3 (a) show sparse 

impulse response that consisted of an M = 100 truncated FIR 

model from a digital microwave radio channel [15]2. Fig. 3 

(b) shows the dispersive impulse response that has been 

generated at random. The input signal, )(nx is a first order 

autoregressive (AR) signal generated according to 

 )()1()( nwnxnx  

where w(n) is zero mean white Gaussian signal. The 

parameter   was set to 0.7. The measurement noise, )(nv with 

32 10v was added to the noise free desired signal generated 

through )()( nnd T
t xh , where th is the true unknown filter 

vector. The filter bank used in the subband adaptive filters 

was the four subband Extended Lapped Transform (ELT) 

[15]. In all the simulations, the simulated learning curves, 

obtained by ensemble averaging over 200 independent trials. 

Also the value of   was set to 25 v [13]. 
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(b) 

Fig. 3. Two different impulse response. (a) sparse (b) dispersive 

 
2 The coefficients of this complex-valued baseband channel model can be 

downloaded from http://spib.rice.edu/spib/microwave.html 
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We set the parameters to 5. , 01.0  05.0 . Figs. 4 

and 5 show the learning curves of PNSAF and PNSAF++ 

algorithms for different impulse responses in Fig. 3.  

Fig. 4 shows the learning curves when the impulse response 

of Fig. 3 (a) is identified. As we can see the PNSAF and 

PNSAF++ algorithms have about same convergence rate but 

PNSAF is a little faster than PNSAF++ which is not 

considerable. 

Fig. 5 shows the learning curve when dispersive response 

of Fig. 3 (b) is identified. We can easily understand that 

PNSAF++ has better performance and also faster 

convergence rate than simple PNSAF. This result is equal to 

what is explained in section III.  Figure 6 and 7 show the 

learning curve of SM-PNSAF and SM-PNSAF++ for 

different impulse response that shown in figure (3). 

Fig. 6 illustrates the learning curve of SM-PNSAF and 

SM-PNSAF++ when sparse response of Fig. 3 (a) is 

identified. It shows that SM-PNSAF has faster convergence 

rate than SM-PNSAF++ although there is no significant 

difference between them same as what achieved before. 

Fig. 7 exhibits the learning curve of SM-PNSAF and 

SM-PNSAF++ when dispersive response of Fig. 3 (b) is 

identified. Corresponds to what’s established in proposed 

algorithms, SM-PNSAF and SM-PNSAF++, in section III, for 

dispersive channel, SM-PNSAF++ is faster than SM-PNSAF. 

At last, all proposed algorithms have been comprised in 

figure 7 and 8 for different impulse responses in figure 3. 

Fig. 8 shows PNSAF, PNSAF++, SM-PNSAF and 

SM-PNSAF++ when sparse response of Fig. 3 (a) is  

identified. It could be understand that PNSAF and PNSAF++ 

have more convergence rate in sparse channel than 

SM-PNSAF and SM-PNSAF++ although based on the results 

which is shown in table I, the average numbers of updates for 

each subands in SM-PNSAF are 170,143,138 and 112 

respectively instead of 1000 for each suband in PNSAF 

algorithm. The average numbers of updates for each subands 

of SM-PNSAF++ are 243,230,209 and 193 respectively 

instead of 1000 for each suband IN PNSAF++ algorithm 

refers to the results of table I. This result proves that set 

membership proportionate SAF algorithms such as 

SM-PNSAF and SM-PNSAF++ ultimately reduces 

computational complexity and also much faster than simple 

PNSAF algorithms like PNSAF and PNSAF++ during 

updating process .  

Fig. 9 shows learning curve of PNSAF, PNFSA++, 

SM-PNSAF and SM-PNSAF++ in dispersive channel that 

shown in figure 3.(b). we can see SM-PNSAF++ and 

PNSAF++ has faster convergence rate in dispersive channels 

than PNSAF and SM-PNSAF. This figure also illustrates that 

in dispersive channel PNSAF++ has better performance than 

SM-PNSAF++ . Based on the results of table I for dispersive 

channel, The average numbers of updates for each subands of 

SM-PNSAF++ are 287,279,265 and 257 respectively instead 

of 1000 for each suband IN PNSAF++. These results are 

achieved for SM-PNSAF in dispersive channel too. Refers to 

the results of table I, the average numbers of updates for each 

subands of SM-PNSAF in dispersive channel are 219,182,174 

and 168 respectively instead of 1000 for each suband in 

PNSAF. It proves that SM-PNSAF++ and SM-PNSAF highly 

reduce computational complexity of adaptive algorithms and 

there are also much faster than PNSAF++ and PNSAF 

respectively.  
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Fig. 4.  Learning curve of PNSAF and PNSAF++ for sparse channel in 

 fig 3.(a) 
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Fig. 5.  Learning curve of PNSAF and PNSAF++ for dispersive channel in 

fig 3.(b) 
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Fig. 6.  Learning curve of SM-PNSAF and SM-PNSAF++ for sparse channel 

in fig 3.(a) 
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Fig. 7.  Learning curve of SM-PNSAF and SM-PNSAF++ for dispersive 

channel in fig 3.(b) 
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Fig. 8. Learning curve of PNSAF, PNSAF++, SM-PNSAF and 

SM-PNSAF++ for sparse channel in fig 3.(a) 
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Fig. 9. Learning curve of PNSAF, PNSAF++, SM-PNSAF and 

SM-PNSAF++ for dispersive channel in fig 3.(b) 

TABLE I: AVERAGE NUMBER OF UPDATES FOR EACH ALGORITHM 

 Average Number of Updates for each subbands 

Algori

thms 

Chann

el 

type 

 

Subband

1 

 

Subband

2 

 

Subband

3 

 

Subban

d4 

 

SM-P

NSAF 

spares 170 143 138 112 

  

dispersive 
219 182 174 168 

SM-P

NSAF

++ 

spares 243 230 209 193 

  

dispersive 
287 279 265 257 

PNSA

F and 

PNSA

F++ 

spares 1000 1000 1000 1000 

  

dispersive 
1000 1000 1000 1000 

PNSA

F++ 

spares 1000 1000 1000 1000 

  

dispersive 
1000 1000 1000 1000 

 

V. CONCLUSION 

In this paper, the concept of proportionate adaptation was 

extended to the NSAF and the family of proportionate 

normalized subband adaptive filter algorithms was 

established. The proposed algorithms are suitable for sparse 

system identification. The PNSAF algorithm had initial fast 

convergence in sparse channel but PNSAF++ had much 

faster than it in dispersive channel. We also established 

SM-PNSAF and SM-PNSAF++. The SM-PNSAF exhibited 

good performance with significant reduction in the overall 

computational complexity but in comparison to PNSAF in 

sparse channel has fewer convergence rates. We 

demonstrated the proposed algorithms through several 

simulation results. 
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