
International Journal of Computer and Electrical Engineering, Vol. 1, No. 4, October, 2009
1793-8163

- 419 -

Abstract— The detection of moving objects in a frame

sequence is an essential processing component for video
surveillance. The main objective of this paper is to create a
prototype system that can produce secure streams, ciphertext,
for every pixel in the detected moving blobs, plaintext, at a
much higher rate to be applicable for real time applications.
This approach can be applied in security applications such as
anti-theft systems and forensic investigation systems. It could
potentially be of benefit to financial investment companies, the
military and security forces in order to keep certain information
encrypted that no one who does not know exactly how to
decrypt will not be able to obtain this information. FPGAs have
been used to process larger images at faster speed because of
their configuration flexibility and high data processing speed. In
this paper, FPGA-based architectures for the proposed privacy
and authenticated surveillance system are presented. This
design can process 768x576 frame sequence at a very high bit
rate that reaches to 40M bit per second in a single FPGA chip,
which is adequate for most real-time vision applications.

Key words— Motion detection, cryptography, authentication,

FPGA.

I. INTRODUCTION
This work presents a robust method to secure streams of

moving objects appearing in images of the frame sequence
that may be sent in open communication channel. A motion
detection technique is applied to detect the moving pixels in
the image sequence taken from a stationary camera. Then, a
cryptographic protocol and an authentication technique are
applied only w.r.t. the detected moving pixels. This method is
suitable for FPGA implementation that can be used in
applications which require real-time.

A. Motion Detection
There are three conventional approaches to motion

detection: temporal differencing [1]; optical flow analysis [2];
and background subtraction [3-5]. Temporal differencing is
suitable in dynamic environments, but generally does a poor
job of extracting all relevant feature-pixels. Optical flow can

be used to detect independently moving objects in the
presence of camera motion; however, most flow-computation
methods are complex and inapplicable in real-time. Motion

M.M. Abutaleb is with the Department of Electronics, Communications,

and Computer,Faculty of Engineering, Helwan University, Cairo, Egypt
A.M. Allam, is with the Department of Electronics, Communications, and

Computer,Faculty of Engineering, Helwan University, Cairo, Egypt
A. Hamdy is with the Department of Electronics, Communications, and

Computer,Faculty of Engineering, Helwan University, Cairo, Egypt
E.M. Saad is with the Department of Electronics, Communications, and

Computer,Faculty of Engineering, Helwan University, Cairo, Egypt
M.E. Abuelwafa is with the Department of Electronics, Communications,

and Computer,Faculty of Engineering, Helwan University, Cairo, Egypt

detection by background subtraction can be divided into
adaptive and non-adaptive background methods.
Non-adaptive methods need off-line initialization; errors in
the background accumulate over time.

A common method of adaptive backgrounding is to
average the frames over time [6]. This creates an approximate
background. This is effective where objects move
continuously and the background is visible for a significant
portion of time. It is not robust for scenes with
slowly-moving objects. It cannot handle a multimodal
backgrounds caused by the repetitive motion of the
background. Hence, in this work a fast motion detection
algorithm based on a multi-modal distribution, modeling
each pixel as a mixture of normal distributions, is used to
detect the moving objects with a small number of
calculations, as presented in [7], to achieve a high frame rate
for real-time requirements. This method deals robustly with
slowly-moving objects as well as with repetitive background
motions of some scene-elements.

B. Security
An automatic surveillance system sends important

information about the movement of detected object. Is this
information not important? Is this information allowed to be
readable for anybody? Is it true that the received information
from this system? The answer of all this questions is no, so
we use the cryptography to give our system the privacy of
information the user need, and use an authentication
technique to be sure about the source of the information.

Diffie-Hellman key exchange [8] was proposed in 1976
during collaboration between Whitfield Diffie and Martin
Hellman and was the first practical method for establishing a
shared secret over an unprotected communications channel.
In 2002 [9], Hellman suggested an algorithm called
Diffie-Hellman-Merkle key exchange in recognition of
Ralph Merkle's contribution to the invention of public-key
cryptography. Encryption techniques are used to prevent any
unauthorized individuals from reading or altering data
transmitted. In this work, an improved stream cipher
technique based on Diffie-Hellman protocol is used; a
stream cipher is a symmetric key cipher where plaintext bits
are combined with a pseudorandom cipher bit stream (key
stream). In a stream cipher the plaintext digits are encrypted
one at a time, and the transformation of successive digits
varies during the encryption.

Although Diffie-Hellman key agreement is a
non-authenticated key-agreement protocol, it provides the
basis for a variety of authenticated protocols.
Challenge-response authentication is a protocol in which one
party presents a question ("challenge") and another party

Real-time FPGA-based Privacy and
Authenticated Surveillance System

M.M. Abutaleb, A.M. Allam, A. Hamdy, M.E. Abuelwafa, and E.M. Saad

International Journal of Computer and Electrical Engineering, Vol. 1, No. 4, October, 2009
1793-8163

 - 420 -

must provide a valid answer ("response") to be authenticated.
In Kerberos authentication protocol [10], the challenge is an
encrypted randomly-generated integer, while the response is
the encrypted integer plus one, proving that the other end was
able to decrypt the integer. This protocol is used in the
proposed design to reduce the hardware and speed up the
system.

C. Hardware Implementation
High complexity algorithm that produces the secure

streams of moving objects from image sequences has been
incorporated into today’s video surveillance systems, due to
computational cost and lack of real-time capability. This
makes the development of such algorithms on the hardware
timely. Standard algorithms have been restricted to small
frame sizes, low frame rates, and solely implemented in
software running on general-purpose computers. Real-time
needs of such systems can be improved by a significant
amount with the use of hardware.

Hence, this paper presents a hardware implementation of a
proposed method, which takes advantage of data parallelism
for a further implementation on a field programmable gate
array (FPGA), a re-configurable computing platform.
Throughput has been drastically increased while; in contrast,
the latency has been decreased, with the use of pipelining.
This implementation is used to produce the secure streams of
moving objects appearing in image sequence at a high bit rate
in a single FPGA chip.

This paper is organized as follows. In section 2 and 3, the
algorithms are formulated and the suggestions are introduced.
In section 4, the hardware implementation design and
performance analysis of the proposed system are discussed.
Conclusion is given in section 5.

II. MOTION DETECTION BASED ON MULTI-MODAL
DISTRIBUTION

A fast and efficient algorithm, presented in [7], is used here
to extract the moving objects in each frame for software and
hardware implementation. In this algorithm, each pixel is
modeled as mixture of three distributions (k = 3) and each
distribution is represented by mean-value (µ) and
weight-value (ω) maintained at time t. The mixture is sorted
every time in decreasing order of weight values. Here, each
pixel is checked against the distributions, until the match is
found. The matching condition is achieved if the variation of
the pixel Xt is within R% (matching ratio) from its mean
value.

For the matched distribution, the current pixel is stored as
the processed pixel value XP,t (XP,t = Xt) to be used in the
next time t+1. Also, the temporal differencing is applied
where the pixel is considered as foreground pixel if:

 | Xt – XP,t-1 | > T (1)

where T is the threshold value. If foreground pixel is

detected, the weight of the matched distribution will be
updated as in equation (2) and its mean will be kept without
any change. While if foreground pixel is not detected, the
weight and mean of the matched distribution will be updated
as in equation (3) and (4) respectively, where α is the

learning factor.

ωk,t = (1 - α) ωk,t-1 (2) ωk,t
= (1 - α) ωk,t-1 + α (3)

 µk,t = (1 - α) µk,t -1 + α Xt (4)

If the current pixel is not matched with any distribution,

this pixel will be classified as foreground pixel. The mean of
the third distribution of that pixel will be replaced by its
intensity value and its weight will be selected as lower value
than other distributions. Also, the processed pixel will be
equal to the value of the mean of the first distribution.
Real-time performance with high resolution video streams
can be achieved by this algorithm.

Figure 1 shows the frame under study. The next step is the
motion detection by our proposed method in [7], which is
performed to extract the foreground pixels; moving pixels.
Figure 2 demonstrates the extraction of the foreground pixels.
Subsequently, the post-processing is performed to fill the
holes inside the blobs, as it is demonstrated in Fig. 3. Figure 4
shows the intensity information of the detected moving
objects.

Fig.1 Single image from the sequence

Fig.2 Pre-processing foreground image

Fig.3 Post-processing foreground image

Fig.4 Masked foreground image

International Journal of Computer and Electrical Engineering, Vol. 1, No. 4, October, 2009
1793-8163

- 421 -

III. PRIVACY AND AUTHENTICATION

A. Encryption/Decryption Algorithm
The simplest, and original, implementation of the

Diffie-Hellman key exchange protocol [8] uses the
Multiplicative group G of integers modulo n, where n is
prime and g is primitive root mod n. Here is a general
description of the protocol:

1. Source (eg. A) and destination (eg. B) agree on

global parameters:
- large prime number n.
- finite cyclic group G and a generating

element g in G.
2. Source A:

- chooses a secret key Xa.
- sends a public key Ya = gXa mod n to

destination B.
3. Destination B:

- chooses a secret key Xb.
- sends a public key Yb = gXb mod n to

source A.
4. Source A: computes a shared secret key

K = (gXb mod n)Xa mod n.
5. Destination B: computes a shared secret key

K = (gXa mod n)Xb mod n.
Both A and B have arrived at the same value, because

gXaXb and gXbXa are equal mod n. Note that only a, b and
gXaXb = gXbXa mod p are kept secret. All the other values,
n, g, gXa mod n, and gXb mod n, are sent in the clear. Once A
and B compute the shared secret they can use it as an
encryption key, known only to them, for sending messages
across the same open communications channel. Of course,
much larger values of Xa, Xb, and n would be needed to
make it secure. If n were a prime of at least 160 bits, then
even the best algorithms known today may not find Xa given
only g, n, and gXa mod n, even using all of mankind's
computing power. The problem is known as the discrete
logarithm problem.

The Diffie-Hellman problem (DHP) is stated informally as
follows: Given an element g and the values of gx and gy,
what is the value of gxy? Formally, g is a generator of some
group and x and y are randomly chosen integers. In the
Diffie-Hellman key exchange, an eavesdropper observes gx
and gy exchanged as part of the protocol, and the two parties
both compute the shared key gxy. In cryptography, for
certain groups, it is assumed that the DHP is hard, and this is
often called the Diffie-Hellman assumption. The problem has
survived scrutiny for a few decades and no "easy" solution
has yet been publicized [11].

In a synchronous stream cipher, a stream of
pseudo-random digits is generated independently of the
plaintext and ciphertext messages, and then combined with
the plaintext (to encrypt) or the ciphertext (to decrypt). In the
most common form, binary digits are used (bits), and the
keystream is combined with the plaintext using the
exclusive-or operation (XOR). In a synchronous stream
cipher, the sender and receiver must be exactly in step for
decryption to be successful. Stream ciphers can be viewed as
approximating the action of a proven unbreakable cipher, the
one-time pad (OTP). A one-time pad uses a keystream of

completely random digits. Substituting pseudorandom data
generated by a cryptographically secure pseudo-random
number generator is a common and effective construction for
a stream cipher.

B. Shared Key Generator
The encryption/decryption algorithm requires computation

of the modular exponentiation to obtain shared secret key.
Modular exponentiation is a type of exponentiation
performed over a modulus. Doing a "modular
exponentiation" means calculating the remainder when
dividing by a positive integer m (called the modulus) a
positive integer b (called the base) raised to the e-th power (e
is called the exponent). In other words, it is needed to
calculate c such that:

C = be mod n (5)
In the domain of hardware implementation, an intelligent

algorithm is needed in order to reach a higher efficiency.
Hence, exponentiation is achieved by performing a number
of squaring and multiplications. This mathematical operation
has involved a few, modular operations; modular
multiplication, modular addition, and subtraction operations
on large integers [12].

Given the integers b, e, and n, the e has to be changed to
binary in order to start the algorithm to compute be. There are
two variations which depend on the direction by which the
bits of e (e contains h-bits) are scanned: (LR) and Right-to-
Left (RL). The LR binary method is more widely known as
follows [12]:

Left-to-Right Binary Method
Input: b; e; n
Output: C := be mod n
1. if eh-1 = 1 then C := b else C := 1
2. for i = h - 2 downto 0
2a. C := C . C mod n
2b. if ei = 1 then C := C. b mod n
3. return C

A modular multiplication problem is defined as the
computation of P = A x B mod n. The modulus multiplication
operation is needed after the separation of exponentiation
into a number of squaring and multiplication. Separating the
multiplication operation into a number of modular addition
operations will be used. The method of computing P is as
follows [12]:

Modular Multiplication Operation
Input: A; B; n
Output: P := A x B mod n
1. P := 0, B' := 0
2. while B' < B loop
2a. B' := B' + 1
2b. P := (P + A) mod n
3. return P

There are basically four general approaches for computing
the product P [12-15]: Multiply and then divide, Interleaving
multiplication and reduction, Brickell’s method and
Montgomery’s method. All approaches above have a
common disadvantage that it doubles up the number of bits
for each multiplication and hence a large register is needed to
store this result.

In this design, each modular multiplication is realized by a

International Journal of Computer and Electrical Engineering, Vol. 1, No. 4, October, 2009
1793-8163

 - 422 -

series of additions and subtractions to overcome this problem.
The modular addition problem is defined as the computation
of S = (P + A) mod n. The proper method of computing S is as
follows:

Modular Addition Operation
Input: A; P; n
Output: S := (P + A) mod n
1. S := P + A
2. while S ≥ n loop
2a. S := S - n
3. return S

Note that modular addition involves subtraction operation
in step 2a. Based on the algorithms described above, a
proposed substantial-speed and memory-efficient method is
developed as follows:

Complete Proposed Method
Input: b; e; n
Output: C := be mod n
1. if eh-1 = 1 then C := b else C := 1
2. for i = h - 2 downto 0
2a. C := (C mod n)2 mod n
2b. if ei = 1 then C := ((C mod n) . b) mod n
3. return C

where each multiplication is realized by a series of additions,
shift arithmetic, and the modulus (mod n) is realized as a
number of subtractions as discussed previously.

C. Secret Key Generator
Linear feedback shift registers (LFSRs) have long been

used as pseudo-random number generators. An LFSR is a
shift register whose input bit is a linear function of its
previous state. The only linear functions of single bits are xor
and inverse- XOR; thus it is a shift register whose input bit is
driven by the exclusive-or (XOR) of some bits of the overall
shift register value. The bit positions that affect the next state
are called the taps. In the diagram shown in Fig.5, the taps are
(16,14,13,11,1) , the feedback polynomial is x16 + x14 + x13
+ x11 + 1. An h-bit LFSR (exponent contains h-bits) is used
in the proposed design based on the standard LFSR in [16] to
generate the secret number in source (Xa) and destination
(Xb) each time randomly.

Fig.5 A 16-bit LFSR

D. Challenge-Response Authentication
In Kerberos protocol [10] as shown in Fig.6, the challenge

is an encrypted integer m, while the response is the encrypted
integer m + 1, proving that the other end was able to decrypt
the integer m. An LFSR is used also here to generate integer
m each time randomly.

Fig.6 Challenge-response authentication

IV. HARDWARE DESCRIPTIONS

A. Data Flow
The data flow of the proposed algorithm is divided into

three modules as shown in Fig.6. In the Motion_Detection
module, images of the frame sequence are read from memory
into the FPGA and aligned to extract the binary masks of
foreground images. This module is previously implemented
in [7]. Then in the Intensity_and_Location module, each
image in the frame sequence is masked by the binary masks
to generate serial streams of the intensity component for each
moving pixel with its index. Finally, these components are
fed into the Privacy_and_Authentication to process the
input/output encrypted streams according to the privacy and
authentication protocols which are discussed previously. Of
importance, the computation process can be fully pipelined
and partially paralleled in hardware to improve its processing
throughput and thereby enable real-time use.

In the block diagram of Fig. 7, the connections between
modules consist of only unidirectional data and a
corresponding data valid signal. Once a set of data is
generated in a module, it is registered into the downstream
module for processing. At the end of the pipeline, the serial
streams are transmitted or received according to the usage
communication protocol.

Fig.7 Data flow of the design

B. Architectures
For Intensity_and_Location module, it consists of

Pixel_Ext block and Int_Loc_Ser block, as shown in Fig. 8.
A control signal rd_in is active when mask signal
(foreground pixel) from Motion Detection module is ready in
the input. Every clock clk signal, Pixel _Ext block generates J
signal as the intensity component F of the current processing
pixel concatenated with its corresponding location idx if and
only if mask signal equal one. This operation is used to
speed-up the system where the data of moving pixels
accumulated with their locations are much smaller than the
whole frame data to be encrypted/ decrypted. Also it achieves
real-time requirement where it is able to send/receive 25-30
fps (frames per second), video rate. A control signal ld is used
to load the concatenated data of the detected pixel to
Int_Loc_Ser block which outputs it on Ps as serial streams
according to synchronous line Cs and enable line En of the
whole system controls.

Fig.8 The structure of Intensity_and_Location module

For Privacy_and_Authentication module, it represents the
security part in the proposed system which is designed in the
form of pipeline and parallel processing as shown in Fig.9 to
achieve maximum speed up. A control signal rst initializes

International Journal of Computer and Electrical Engineering, Vol. 1, No. 4, October, 2009
1793-8163

- 423 -

the parameters of the system. Fr_En is active when the new
frame is ready to process as a new cycle. Signals g and n
represent selective prime and primitive root that are required
to compute the shared secret key.

Fig.9 The structure of Privacy_and_Authentication module

Key_Gen block is used to compute the shared secret key
based on Diffie-Hellman key exchange protocol which is
discussed in section 3.1. It consists of two Mod_Unit blocks,
as shown in Fig. 10. Mod_Unit block is used to compute Co3,
the modular exponentiation C= be mod n, based on the
proposed algorithm which is discussed in section 3.2. First
Mod_Unit block is used to compute Ya = gXa mod n, public
key of source A, then activates the finish control signal Fn1.
The second Mod_Unit block is used to compute K = YbXa
mod n, the shared secret key of source A and destination B,
when enable line En2 is active then activates the finish
control signal Fn2. Note that, Xa and Ya in the source A are
only replaced by Xb and Yb in the destination B to compute
the shared secret key.

Fig.10 Key_Gen block

Rnd_Gen block is pseudo-random number generator
which is discussed in section 3.2. Each frame, it is used to
generate a secret key Xa in the source (or Xb in the
destination) and randomly-generated information mx, the
challenge of the entity authentication, only in the source.
Auth_Fun block is used to compute a predetermined function
fmx of the originally-offered information in the source (or the

received information in the destination). Auth_Comp block is
used to compare fmx with the received decrypted information
fmr, the response of the entity authentication, in only in the
source. A signal Cm_En represents the decision of the
authentication process to start the encryption/decryption
algorithm of plaintext (moving pixels streams) in ED_Unit
block. PAR2SER and SER2PAR blocks are used to convert
parallel to serial and serial to parallel data inside the system.

Based on three address lines A0,A1,A2 and synchronous
line Cs (bit rate), Synch_Unit block is used: (1) to control the
operation of Privacy_and_Authentication module with the
whole system, (2) to connect the in/out serial stream of signal
sio to one of five serial signals Yas (Ya as serial), Ybs (Yb as
serial), Ems (encryption of mx as serial), Efms (encryption of
fmr as serial), and Eps (encryption of Ps, moving pixels
streams), and (3) to activate PAR2SER, SER2PAR, and
Key_Ser_Ex blocks according to the operation by using five
enable lines En1, En2, En3, En4, and En5. Key_Ser_Ex
block is used to generate shared secret key streams and
change it by doing XOR for each two successive bits in key
after the end of the current key. This operation is used to
reduce the system overhead and make it one-time pad
through current frame but to keep the security level, the key
is recomputed each frame completely using Key_Gen block.

C. Performance
For enhanced hardware performance, several hardware

optimizations were made:
• Pipeline structure. A heavily pipelined hardware

structure was used to maximize throughput. Once
the pipeline is full, the hardware can produce a
result on every clock cycle.

• Optimizations of Motion_Detection module.
Memory bandwidth reduction is achieved by
utilizing distribution similarities in succeeding
neighboring pixels and data flow reduction is also
achieved by processing only one distribution at time
through the hardware, as presented in [17].

• Fast memory access. Due to the pipelined hardware
architecture used, the major system bottleneck
turned out to be memory access. A high speed
multi-port memory controller is used to increase the
data throughput of the design.

• Efficient Modular Exponentiation. Modular
exponentiation is performed as a number of
additions and subtractions inside the loops and uses
the same register size to store the result of each
modular multiplication.

D. Simulation and Synthesis
A simulation is performed to test the logic function of the

hardware design and it is presented to verify the correctness
of the algorithms implemented by the proposed modules. A
simulation of the Privacy_and_Authentication module is
performed with 25 ns simulation clock period (40 MHz).
Assumed that n = 253, g = 3, Xa = 97. The public key of
source A is computed as Ya = 397 mod 253 = 40. Assumed
that Yb = 248, the received public key of destination B.
Finally, the shared secret key of source A and destination B is
computed as K = 24897 mod 253 = 160. The simulation result
of the key generator (Key_Gen) process is shown in Fig. 11.

International Journal of Computer and Electrical Engineering, Vol. 1, No. 4, October, 2009
1793-8163

 - 424 -

Fig.11 Simulation waveforms of the key generator

Each new frame, Rnd_Gen block is used to generate a
secret key and authentication information mx randomly. The
simulation result of the random generator (Rnd_Gen) process
is shown in Fig. 12.

Fig.12 Simulation waveforms of the random generator

Through current frame, Key_Ser_Ex block is used to
change a shared secret key and output the current key as
serial stream. The simulation result of the key serial exchange
(Key_Ser_Ex) process is shown in Fig. 13.

Fig.13 Simulation waveforms of the key serial exchanger

Each moving pixel is represented in our system by 28-bits
which accumulate intensity and location bits with a single
flag bit. This flag bit, the last left bit, is constant by 0 or 1
through the current frame and must be inverted with a new
frame in the source to be used as indicator for each new frame
received in the destination. A key size of 168-bits is used to
encrypt/decrypt 28 moving pixel each time. The simulation
result of the encryption and encryption process (ED_Unit) for
test frame serially with a key stream is shown in Fig. 14 and
Fig. 15. Fig.14 depicts part of the encryption process, while
Fig. 15 shows the corresponding decryption process. All
simulation results are identical for the corresponding
theoretical results.

In regard to the designated hardware realization, The
VHDL code is synthesized by considering VERTEX-II
Xilinx chip 2V2000fg676 which has 10752 CLB slices and
22872 D-flip flops or Latches. The VERTEX-II family
provides the density, speed, and features to integrate entire
systems, including multiple buses into a single chip.
Throughout the synthesis results, there are a few points worth
to be discussed. Motion_Detection module as presented in
[17] uses 418 CLB slices with 1.94% utilization and the clock
frequency report showed the critical frequency is 80.7MHz.

Fig.14 Simulation waveforms for part of the encryption process

Fig.15 Simulation waveforms for part of the decryption process

Intensity_and_Location module uses 29 CLB slices with

0.27% utilization and the clock frequency report showed the
critical frequency is 269.4MHz. While
Privacy_and_Authentication module uses 5120 CLB slices
with 47.62% utilization and 6844 DFFs with 29.92%
utilization. The clock frequency report showed the critical
frequency is 42.6MHz for key generator. This frequency
represents the degree of the system overhead but not limits
the speed of the whole system where it is used here only
before encryption/decryption process. However, the critical
frequency can possibly be increased further by optimizing the
circuit through place & route the internal probes. The serial
to parallel and parallel to serial converters could achieve
406.8MHz and 207.2MHz respectively. The frequency
achieved of the whole system is 40MHz which can
encrypt/decrypt the image sequence of size 768x576 with bit
rate of 40Mbs (bits/Second) that achieves desired real time
rate, 25-30 fps.

V. CONCLUSION
In the proposed surveillance system, a fast and efficient

motion detection algorithm has been used to extract the
moving objects in each image of frame sequence then an
improved stream cipher and authentication techniques have
been applied only w.r.t. the detected moving pixels. So,
secure streams of detected moving objects in the frame
sequence can be transmitted or received across the open
communications channel. Real-time performance and
efficient hardware are achieved by this method.

A hardware implementation for the proposed method has
been presented in the form of pipeline and parallel processing
to achieve maximum speeding up. Several hardware
optimizations were also made to enhance hardware
performance. This design could encrypt/decrypt the streams
of moving objects appearing in 768x576 image sequence
taken from a stationary camera at a very high bit rate of
40Mbs in a single FPGA chip and achieve real time
requirement.

International Journal of Computer and Electrical Engineering, Vol. 1, No. 4, October, 2009
1793-8163

- 425 -

REFERENCES
[1] C. Anderson, P. Burt, and G. van der Wal, "Change detection and

tracking using pyramid transformation techniques", in Proceedings of
SPIE. Intelligent Robots and Computer Vision, vol. 579, pp. 72-78,
1985.

[2] J. Barron, D. Fleet, and S. Beauchemin, "Performance of optical flow
techniques", International Journal of Computer Vision, vol. 12, pp.
42-77, 1994.

[3] A. Kasinski and A. Hamdy, "Efficient Separation of mobile objects on
the scene from the sequence taken with an overhead camera". Proc. Int.
Conf. on Computer Vision and Graphics, Zakopane, vol. 1, pp.
425-430, Sept. 2002.

[4] C. Ridder, O. Munkelt, and H. Kirchner, "Adaptive Background
Estimation and Foreground Detection Using Kalman-Filtering". Proc.
Int. l Conf. Recent Advances in Mechatronics, ICRAM .95, pp.
193-199, 1995.

[5] Y. Ivanov, A. Bobick, and J. Liu, "Fast Lighting Independent
Background Subtraction". Technical Report no. 437, MIT Media
Laboratory, 1997.

[6] G. Halevy and D. Weinshall, "Motion of disturbances: detection and
tracking of multi-body non-rigid motion", Machine Vision and
Applications, vol. 11, Issue 3, pp. 122-137, 1999.

[7] E.M. Saad, A. Hamdy, and M.M. Abutaleb, "FPGA-based
Implementation of a Low Cost and Area Real-time Motion Detection",
15th IEEE Conference in Mixed Design of Integrated Circuits and
Systems, Poznan, Poland, pp. 249-254, June 19-21, 2008.

[8] W. Diffie and M. E. Hellman, "New Directions in
Cryptography", IEEE Transactions on Information Theory, vol.
IT-22, Nov. 1976, pp: 644-654.

[9] Martin E. Hellman, "An Overview of Public Key
Cryptography", IEEE Communications Magazine, pp: 42-49, May
2002.

[10] B. Clifford Neuman and Theodore Ts'o, "Kerberos: An Authentication
Service for Computer Networks", IEEE Communications, 32(9)
pp33–38. Sept. 1994.

[11] D. Cash, E. Kiltz, V. Shoup “The Twin Diffie-Hellman Problem and
Applications.” Advances in Cryptology – EUROCRYPT
2008, pp: 127-145, April 2008.

[12] C. K. Koc., “RSA Hardware Implementation. Technical Report TR
801”, RSA Laboratories, pp. 1-24, 1996.

[13] M.K. Hani, T.S. Lin, N. Shaikh-Husin, “FPGA Implementation of
RSA Public-Key Cryptographic Coprocessor”, in Proceedings of
TENCON, vol. 3, pp. 6-11, Kuala Lumpur, Malaysia, 2000.

[14] Y.S. Kim, W.S. Kang, J.R. Choi, “Implementation of 1024-bit Modular
Processor for RSA Cryptosystem”, in Proceedings of Asia-Pasific
Conference on ASIC, pp. 187-190, Cheju Island, Korea, 2000.

[15] M. Shand and J. Vuillemin, “Fast Implementation of RSA
Cryptography”, in Proceedings of 11th IEEE Symposium on Computer
Arithmetic, pp. 252-259, Windsor, Ontario, 1993.

[16] Maria George and Peter Alfke, "Linear Feedback Shift Registers in
Virtex Devices", XAPP210 (v1.3), April 2007,
http://www.xilinx.com/bvdocs/appnotes/xapp210.pdf

[17] M.M. Abutaleb, A. Hamdy, and E.M. Saad, "FPGA-Based Real-Time
Video-Object Segmentation with Optimization Schemes",
International Journal of Circuits, Systems, and Signal Processing, vol.
2, issue 2, pp. 78-86, 2008.

http://www.xilinx.com/bvdocs/appnotes/xapp210.pdf

